Nuprl Lemma : band-is-inl-base
∀[a,b:Base].
  ∀[c:Top]. (a ~ inl outl(a)) ∧ (b ~ inl outl(b)) supposing (a ∧b b) = (inl c) ∈ (Top + Top) 
  supposing a ∧b b ∈ Top + Top
Proof
Definitions occuring in Statement : 
band: p ∧b q
, 
outl: outl(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
member: t ∈ T
, 
inl: inl x
, 
union: left + right
, 
base: Base
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
, 
top: Top
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
outr: outr(x)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
false: False
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
true: True
Lemmas referenced : 
value-type-has-value, 
union-value-type, 
top_wf, 
has-value-band-type, 
equal-wf-base-T, 
equal-wf-base, 
base_wf, 
has-value-implies-dec-isinl-2, 
equal_wf, 
all_wf, 
sqequal-wf-base, 
not_all_sqequal, 
subtype_base_sq, 
int_subtype_base, 
band-is-inl
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
sqequalAxiom, 
inlEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
unionElimination, 
lambdaFormation, 
lambdaEquality, 
applyLambdaEquality, 
natural_numberEquality, 
instantiate, 
cumulativity, 
intEquality, 
promote_hyp
Latex:
\mforall{}[a,b:Base].
    \mforall{}[c:Top].  (a  \msim{}  inl  outl(a))  \mwedge{}  (b  \msim{}  inl  outl(b))  supposing  (a  \mwedge{}\msubb{}  b)  =  (inl  c) 
    supposing  a  \mwedge{}\msubb{}  b  \mmember{}  Top  +  Top
Date html generated:
2017_04_14-AM-07_31_07
Last ObjectModification:
2017_02_27-PM-02_59_36
Theory : bool_1
Home
Index