Nuprl Lemma : band-is-inl-base

[a,b:Base].
  ∀[c:Top]. (a inl outl(a)) ∧ (b inl outl(b)) supposing (a ∧b b) (inl c) ∈ (Top Top) 
  supposing a ∧b b ∈ Top Top


Proof




Definitions occuring in Statement :  band: p ∧b q outl: outl(x) uimplies: supposing a uall: [x:A]. B[x] top: Top and: P ∧ Q member: t ∈ T inl: inl x union: left right base: Base sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q prop: top: Top cand: c∧ B all: x:A. B[x] implies:  Q or: P ∨ Q outr: outr(x) so_lambda: λ2x.t[x] so_apply: x[s] false: False band: p ∧b q ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} true: True
Lemmas referenced :  value-type-has-value union-value-type top_wf has-value-band-type equal-wf-base-T equal-wf-base base_wf has-value-implies-dec-isinl-2 equal_wf all_wf sqequal-wf-base not_all_sqequal subtype_base_sq int_subtype_base band-is-inl
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination hypothesis equalityTransitivity equalitySymmetry hypothesisEquality sqequalRule productElimination independent_pairEquality sqequalAxiom inlEquality isect_memberEquality voidElimination voidEquality unionEquality baseApply closedConclusion baseClosed independent_pairFormation dependent_functionElimination independent_functionElimination unionElimination lambdaFormation lambdaEquality applyLambdaEquality natural_numberEquality instantiate cumulativity intEquality promote_hyp

Latex:
\mforall{}[a,b:Base].
    \mforall{}[c:Top].  (a  \msim{}  inl  outl(a))  \mwedge{}  (b  \msim{}  inl  outl(b))  supposing  (a  \mwedge{}\msubb{}  b)  =  (inl  c) 
    supposing  a  \mwedge{}\msubb{}  b  \mmember{}  Top  +  Top



Date html generated: 2017_04_14-AM-07_31_07
Last ObjectModification: 2017_02_27-PM-02_59_36

Theory : bool_1


Home Index