Nuprl Lemma : fix_wf_corec_3parameter

[F,A,B,C:Type ⟶ Type].
  (∀[G:Top ⟶ Top ⟶ Top ⟶ Top ⟶ Top ⋂ ⋂T:{T:Type| corec(T.F[T]) ⊆T} 
                                           ((A[T] ⟶ B[T] ⟶ C[T] ⟶ T) ⟶ A[F[T]] ⟶ B[F[T]] ⟶ C[F[T]] ⟶ F[T])].
   ∀[a:A[corec(T.F[T])]]. ∀[b:B[corec(T.F[T])]]. ∀[c:C[corec(T.F[T])]].
     (fix(G) c ∈ corec(T.F[T]))) supposing 
     (Continuous+(T.C[T]) and 
     Continuous+(T.B[T]) and 
     Continuous+(T.A[T]))


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) strong-type-continuous: Continuous+(T.F[T]) isect2: T1 ⋂ T2 uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  apply: a fix: fix(F) isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a corec: corec(T.F[T]) so_lambda: λ2x.t[x] so_apply: x[s] strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T]) isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  subtype_rel: A ⊆B guard: {T} or: P ∨ Q bfalse: ff top: Top nat: prop:
Lemmas referenced :  fix_wf_corec2' continuous-function continuous-id subtype_rel_self nat_wf isect2_subtype_rel3 top_wf subtype_rel_wf corec_wf bool_wf primrec_wf int_seg_wf isect2_wf strong-type-continuous_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule isect_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality applyEquality universeEquality independent_isectElimination hypothesis isectEquality cumulativity unionElimination equalityElimination instantiate setEquality setElimination rename because_Cache inrFormation equalityTransitivity equalitySymmetry functionExtensionality voidElimination voidEquality natural_numberEquality axiomEquality

Latex:
\mforall{}[F,A,B,C:Type  {}\mrightarrow{}  Type].
    (\mforall{}[G:Top  {}\mrightarrow{}  Top  {}\mrightarrow{}  Top  {}\mrightarrow{}  Top  {}\mrightarrow{}  Top  \mcap{}  \mcap{}T:\{T:Type|  corec(T.F[T])  \msubseteq{}r  T\} 
                                                                                      ((A[T]  {}\mrightarrow{}  B[T]  {}\mrightarrow{}  C[T]  {}\mrightarrow{}  T)
                                                                                      {}\mrightarrow{}  A[F[T]]
                                                                                      {}\mrightarrow{}  B[F[T]]
                                                                                      {}\mrightarrow{}  C[F[T]]
                                                                                      {}\mrightarrow{}  F[T])].  \mforall{}[a:A[corec(T.F[T])]].  \mforall{}[b:B[corec(T.F[T])]].
      \mforall{}[c:C[corec(T.F[T])]].
          (fix(G)  a  b  c  \mmember{}  corec(T.F[T])))  supposing 
          (Continuous+(T.C[T])  and 
          Continuous+(T.B[T])  and 
          Continuous+(T.A[T]))



Date html generated: 2019_06_20-PM-00_36_58
Last ObjectModification: 2018_08_03-PM-03_55_45

Theory : co-recursion


Home Index