Nuprl Lemma : strat2play-reachable

g:SimpleGame. ∀n:ℕ. ∀s:win2strat(g;n). ∀moves:strat2play(g;n;s).
  ((||moves|| ≤ ((2 n) 2))  (moves ∈ sequence({p:Pos(g)| sg-reachable(g;InitialPos(g);p)} )))


Proof




Definitions occuring in Statement :  sg-reachable: sg-reachable(g;x;y) strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) play-len: ||moves|| sg-init: InitialPos(g) sg-pos: Pos(g) simple-game: SimpleGame sequence: sequence(T) nat: le: A ≤ B all: x:A. B[x] implies:  Q member: t ∈ T set: {x:A| B[x]}  multiply: m add: m natural_number: $n
Definitions unfolded in proof :  guard: {T} uiff: uiff(P;Q) uimplies: supposing a le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} pi2: snd(t) pi1: fst(t) seq-len: ||s|| seq-item: s[i] play-len: ||moves|| play-item: moves[i] sequence: sequence(T) so_apply: x[s] prop: so_lambda: λ2x.t[x] nat: squash: T subtype_rel: A ⊆B uall: [x:A]. B[x] implies:  Q member: t ∈ T all: x:A. B[x]
Lemmas referenced :  squash_wf all_wf sg-init_wf sg-reachable_wf lelt_wf less_than_transitivity1 multiply-is-int-iff int_subtype_base set_subtype_base add-is-int-iff simple-game_wf win2strat_wf strat2play_wf play-len_wf equal_wf nat_wf seq-len_wf le_wf sg-pos_wf sequence_wf set_wf int_seg_wf strat2play_subtype play-item-reachable
Rules used in proof :  setEquality functionEquality independent_isectElimination intEquality closedConclusion baseApply independent_pairFormation dependent_set_memberEquality functionExtensionality dependent_pairEquality productElimination independent_functionElimination lambdaEquality equalitySymmetry equalityTransitivity because_Cache multiplyEquality addEquality natural_numberEquality imageElimination baseClosed imageMemberEquality rename setElimination applyLambdaEquality sqequalRule applyEquality isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}g:SimpleGame.  \mforall{}n:\mBbbN{}.  \mforall{}s:win2strat(g;n).  \mforall{}moves:strat2play(g;n;s).
    ((||moves||  \mleq{}  ((2  *  n)  +  2))  {}\mRightarrow{}  (moves  \mmember{}  sequence(\{p:Pos(g)|  sg-reachable(g;InitialPos(g);p)\}  )))



Date html generated: 2018_07_25-PM-01_33_58
Last ObjectModification: 2018_06_20-AM-10_53_45

Theory : co-recursion


Home Index