Nuprl Lemma : play-item-reachable

g:SimpleGame. ∀n:ℕ. ∀s:win2strat(g;n). ∀moves:strat2play(g;n;s). ∀i:ℕ(2 n) 2.
  (moves[i] ∈ {p:Pos(g)| sg-reachable(g;InitialPos(g);p)} )


Proof




Definitions occuring in Statement :  sg-reachable: sg-reachable(g;x;y) strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) play-item: moves[i] sg-init: InitialPos(g) sg-pos: Pos(g) simple-game: SimpleGame int_seg: {i..j-} nat: all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  multiply: m add: m natural_number: $n
Definitions unfolded in proof :  sq_type: SQType(T) less_than: a < b play-item: moves[i] cand: c∧ B nat_plus: + guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] true: True less_than': less_than'(a;b) top: Top subtract: m lelt: i ≤ j < k sq_stable: SqStable(P) prop: false: False implies:  Q rev_implies:  Q not: ¬A iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) uimplies: supposing a uiff: uiff(P;Q) le: A ≤ B int_seg: {i..j-} nat: exists: x:A. B[x] sg-reachable: sg-reachable(g;x;y) squash: T subtype_rel: A ⊆B and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  subtype_base_sq nat_plus_properties nat_properties int_seg_properties seq-truncate-item seq-len-truncate minus-zero mul-commutes mul-distributes omega-shadow mul-distributes-right two-mul one-mul le_reflexive add-subtract-cancel simple-game_wf win2strat_wf strat2play_wf int_seg_wf sg-init_wf sg-reachable_wf nat_plus_subtype_nat le_weakening2 sg-legal2_wf nat_plus_wf multiply_nat_wf add_nat_wf mul_bounds_1a sg-legal1_wf squash_wf nat_wf all_wf le-add-cancel-alt zero-mul add-mul-special not-lt-2 decidable__lt minus-minus multiply-is-int-iff set_subtype_base subtract_wf lelt_wf seq-item_wf equal_wf less_than_wf le-add-cancel2 seq-len_wf mul-associates less-iff-le le_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 false_wf decidable__le int_subtype_base add-is-int-iff sg-pos_wf seq-truncate_wf play-item_wf strat2play_subtype strat2play-invariant-1
Rules used in proof :  cumulativity instantiate levelHypothesis addLevel promote_hyp sqequalIntensionalEquality functionEquality equalitySymmetry equalityTransitivity productEquality multiplyEquality minusEquality intEquality voidEquality isect_memberEquality lambdaEquality independent_functionElimination voidElimination independent_pairFormation unionElimination independent_isectElimination closedConclusion baseApply natural_numberEquality addEquality dependent_pairFormation dependent_set_memberEquality imageElimination baseClosed imageMemberEquality rename setElimination applyLambdaEquality sqequalRule hypothesis applyEquality productElimination because_Cache isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:SimpleGame.  \mforall{}n:\mBbbN{}.  \mforall{}s:win2strat(g;n).  \mforall{}moves:strat2play(g;n;s).  \mforall{}i:\mBbbN{}(2  *  n)  +  2.
    (moves[i]  \mmember{}  \{p:Pos(g)|  sg-reachable(g;InitialPos(g);p)\}  )



Date html generated: 2018_07_25-PM-01_33_53
Last ObjectModification: 2018_06_20-AM-10_51_25

Theory : co-recursion


Home Index