Nuprl Lemma : weak-continuity-rel-fun

P:(ℕ ⟶ ℕ) ⟶ ℙ((∀f:ℕ ⟶ ℕ. ⇃(P f))  (∀f:ℕ ⟶ ℕ. ⇃(∃k:ℕ. ∀g:ℕ ⟶ ℕ((f g ∈ (ℕk ⟶ ℕ))  (P g)))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  guard: {T} not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: exists: x:A. B[x] so_apply: x[s] uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  subtype_rel_self int_seg_subtype_nat subtype_rel_dep_function int_seg_wf equal_wf le_wf false_wf exists_wf implies-quotient-true weak-continuity-rel equiv_rel_true true_wf quotient_wf all_wf nat_wf
Rules used in proof :  productElimination rename setElimination independent_pairFormation natural_numberEquality dependent_set_memberEquality dependent_pairFormation independent_functionElimination dependent_functionElimination universeEquality cumulativity independent_isectElimination hypothesisEquality functionExtensionality applyEquality lambdaEquality sqequalRule because_Cache thin isectElimination sqequalHypSubstitution hypothesis extract_by_obid introduction cut functionEquality lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}P:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(P  f))  {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}k:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((f  =  g)  {}\mRightarrow{}  (P  g)))))



Date html generated: 2017_04_17-AM-10_02_29
Last ObjectModification: 2017_04_15-PM-05_16_11

Theory : continuity


Home Index