Nuprl Lemma : weak-continuity-rel

P:(ℕ ⟶ ℕ) ⟶ ℕ ⟶ ℙ
  ((∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ(P n)))  (∀f:ℕ ⟶ ℕ. ⇃(∃n,k:ℕ. ∀g:ℕ ⟶ ℕ((f g ∈ (ℕk ⟶ ℕ))  (P n)))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: exists: x:A. B[x] nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  axiom-choice-1X-quot nat_wf implies-quotient-true2 equal_wf int_seg_wf subtype_rel_function int_seg_subtype_nat istype-false subtype_rel_self istype-nat quotient_wf true_wf equiv_rel_true strong-continuity2-implies-weak implies-quotient-true equal-wf-base set_subtype_base le_wf istype-int int_subtype_base iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt rename cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis hypothesisEquality independent_functionElimination isectElimination sqequalRule productEquality functionEquality applyEquality natural_numberEquality setElimination because_Cache independent_isectElimination independent_pairFormation productElimination productIsType functionIsType universeIsType lambdaEquality_alt inhabitedIsType universeEquality intEquality equalityIstype sqequalBase equalitySymmetry dependent_pairFormation_alt instantiate equalityTransitivity

Latex:
\mforall{}P:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}
    ((\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  (P  f  n)))  {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n,k:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((f  =  g)  {}\mRightarrow{}  (P  g  n)))))



Date html generated: 2020_05_19-PM-10_05_02
Last ObjectModification: 2020_01_04-PM-08_12_33

Theory : continuity


Home Index