Nuprl Lemma : weak-continuity-rel
∀P:(ℕ ⟶ ℕ) ⟶ ℕ ⟶ ℙ
  ((∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. (P f n))) 
⇒ (∀f:ℕ ⟶ ℕ. ⇃(∃n,k:ℕ. ∀g:ℕ ⟶ ℕ. ((f = g ∈ (ℕk ⟶ ℕ)) 
⇒ (P g n)))))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
guard: {T}
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
axiom-choice-1X-quot, 
nat_wf, 
implies-quotient-true2, 
equal_wf, 
int_seg_wf, 
subtype_rel_function, 
int_seg_subtype_nat, 
istype-false, 
subtype_rel_self, 
istype-nat, 
quotient_wf, 
true_wf, 
equiv_rel_true, 
strong-continuity2-implies-weak, 
implies-quotient-true, 
equal-wf-base, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
rename, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
isectElimination, 
sqequalRule, 
productEquality, 
functionEquality, 
applyEquality, 
natural_numberEquality, 
setElimination, 
because_Cache, 
independent_isectElimination, 
independent_pairFormation, 
productElimination, 
productIsType, 
functionIsType, 
universeIsType, 
lambdaEquality_alt, 
inhabitedIsType, 
universeEquality, 
intEquality, 
equalityIstype, 
sqequalBase, 
equalitySymmetry, 
dependent_pairFormation_alt, 
instantiate, 
equalityTransitivity
Latex:
\mforall{}P:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}
    ((\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  (P  f  n)))  {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n,k:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((f  =  g)  {}\mRightarrow{}  (P  g  n)))))
Date html generated:
2020_05_19-PM-10_05_02
Last ObjectModification:
2020_01_04-PM-08_12_33
Theory : continuity
Home
Index