Nuprl Lemma : l_index_hd
∀[T:Type]. ∀[dT:EqDecider(T)]. ∀[L:T List].  index(L;hd(L)) ~ 0 supposing ¬↑null(L)
Proof
Definitions occuring in Statement : 
l_index: index(L;x), 
hd: hd(l), 
null: null(as), 
list: T List, 
deq: EqDecider(T), 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
natural_number: $n, 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
or: P ∨ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
not: ¬A, 
implies: P ⇒ Q, 
true: True, 
false: False, 
cons: [a / b], 
top: Top, 
bfalse: ff, 
l_index: index(L;x), 
mu: mu(f), 
uimplies: b supposing a, 
prop: ℙ, 
mu-ge: mu-ge(f;n), 
select: L[n], 
deq: EqDecider(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
eqof: eqof(d), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
list-cases, 
null_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
reduce_hd_cons_lemma, 
not_wf, 
assert_wf, 
null_wf, 
list_wf, 
deq_wf, 
bool_wf, 
equal-wf-T-base, 
equal_wf, 
bnot_wf, 
eqof_wf, 
uiff_transitivity, 
eqtt_to_assert, 
safe-assert-deq, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
independent_functionElimination, 
natural_numberEquality, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidEquality, 
cumulativity, 
because_Cache, 
universeEquality, 
isect_memberFormation, 
sqequalAxiom, 
equalityTransitivity, 
equalitySymmetry, 
callbyvalueReduce, 
sqleReflexivity, 
applyEquality, 
setElimination, 
rename, 
baseClosed, 
lambdaFormation, 
equalityElimination, 
independent_isectElimination, 
independent_pairFormation, 
addLevel, 
impliesFunctionality, 
levelHypothesis
Latex:
\mforall{}[T:Type].  \mforall{}[dT:EqDecider(T)].  \mforall{}[L:T  List].    index(L;hd(L))  \msim{}  0  supposing  \mneg{}\muparrow{}null(L)
Date html generated:
2017_04_17-AM-09_15_53
Last ObjectModification:
2017_02_27-PM-05_21_17
Theory : decidable!equality
Home
Index