Nuprl Lemma : round-robin-equal

[L:Top List]. ∀[b:ℕ]. (round-robin(L) (b ||L||) round-robin(L) b) supposing 0 < ||L||


Proof




Definitions occuring in Statement :  round-robin: round-robin(L) length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] top: Top apply: a add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a round-robin: round-robin(L) squash: T prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top nat_plus: + nequal: a ≠ b ∈  true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T)
Lemmas referenced :  subtype_base_sq int_subtype_base equal_wf squash_wf true_wf rem_rec_case length_wf top_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf less_than_wf intformeq_wf int_formula_prop_eq_lemma equal-wf-T-base iff_weakening_equal add-subtract-cancel nat_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis applyEquality lambdaEquality imageElimination hypothesisEquality equalityTransitivity equalitySymmetry universeEquality dependent_set_memberEquality addEquality setElimination rename dependent_functionElimination natural_numberEquality unionElimination productElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache remainderEquality lambdaFormation baseClosed imageMemberEquality independent_functionElimination sqequalAxiom

Latex:
\mforall{}[L:Top  List].  \mforall{}[b:\mBbbN{}].  (round-robin(L)  (b  +  ||L||)  \msim{}  round-robin(L)  b)  supposing  0  <  ||L||



Date html generated: 2017_04_17-AM-09_15_26
Last ObjectModification: 2017_02_27-PM-05_21_08

Theory : decidable!equality


Home Index