Nuprl Lemma : equipollent-sum-zero

[A:Type]. (A + ℕA ∧ ℕA)


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} uall: [x:A]. B[x] and: P ∧ Q union: left right natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B member: t ∈ T equipollent: B exists: x:A. B[x] outl: outl(x) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A all: x:A. B[x] top: Top prop: biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) iff: ⇐⇒ Q
Lemmas referenced :  ext-eq_weakening equipollent_weakening_ext-eq equipollent-union-com equipollent_functionality_wrt_equipollent equal_wf biject_wf int_seg_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut independent_pairFormation hypothesis universeEquality dependent_pairFormation lambdaEquality unionElimination thin sqequalRule hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination natural_numberEquality because_Cache setElimination rename productElimination independent_isectElimination int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality computeAll unionEquality cumulativity lambdaFormation inlEquality independent_functionElimination

Latex:
\mforall{}[A:Type].  (A  +  \mBbbN{}0  \msim{}  A  \mwedge{}  \mBbbN{}0  +  A  \msim{}  A)



Date html generated: 2016_05_14-PM-04_01_10
Last ObjectModification: 2016_01_14-PM-11_06_27

Theory : equipollence!!cardinality!


Home Index