Nuprl Lemma : mu-dec-in-bar-nat

[A:Type]. ∀[P:A ⟶ ℕ ⟶ ℙ]. ∀[d:a:A ⟶ k:ℕ ⟶ Dec(P[a;k])]. ∀[a:A].  (mu-dec(d;a) ∈ partial(ℕ))


Proof




Definitions occuring in Statement :  mu-dec: mu-dec(d;a) partial: partial(T) nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s1;s2] prop: mu-dec: mu-dec(d;a) mu: mu(f) mu-ge: mu-ge(f;n) uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q subtype_rel: A ⊆B has-value: (a)↓ ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q isl: isl(x) bool: 𝔹
Lemmas referenced :  istype-universe nat_wf decidable_wf fixpoint-induction-bottom partial_wf set-value-type le_wf istype-int int-value-type nat-mono bottom_wf_function ifthenelse_wf-partial inclusion-partial value-type-has-value nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf btrue_wf bool_wf union-value-type unit_wf2 bfalse_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality hypothesis Error :functionIsType,  Error :universeIsType,  applyEquality universeEquality because_Cache Error :isect_memberFormation_alt,  sqequalRule axiomEquality equalityTransitivity equalitySymmetry Error :isect_memberEquality_alt,  functionEquality independent_isectElimination intEquality Error :lambdaEquality_alt,  natural_numberEquality Error :lambdaFormation_alt,  dependent_functionElimination independent_functionElimination callbyvalueReduce addEquality setElimination rename Error :dependent_set_memberEquality_alt,  unionElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality voidElimination independent_pairFormation Error :inhabitedIsType,  Error :equalityIsType1

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[d:a:A  {}\mrightarrow{}  k:\mBbbN{}  {}\mrightarrow{}  Dec(P[a;k])].  \mforall{}[a:A].    (mu-dec(d;a)  \mmember{}  partial(\mBbbN{}))



Date html generated: 2019_06_20-PM-01_17_31
Last ObjectModification: 2018_10_06-AM-11_21_35

Theory : int_2


Home Index