Nuprl Lemma : mu-dec-in-bar-nat
∀[A:Type]. ∀[P:A ⟶ ℕ ⟶ ℙ]. ∀[d:a:A ⟶ k:ℕ ⟶ Dec(P[a;k])]. ∀[a:A].  (mu-dec(d;a) ∈ partial(ℕ))
Proof
Definitions occuring in Statement : 
mu-dec: mu-dec(d;a)
, 
partial: partial(T)
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
mu-dec: mu-dec(d;a)
, 
mu: mu(f)
, 
mu-ge: mu-ge(f;n)
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
has-value: (a)↓
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
isl: isl(x)
, 
bool: 𝔹
Lemmas referenced : 
istype-universe, 
nat_wf, 
decidable_wf, 
fixpoint-induction-bottom, 
partial_wf, 
set-value-type, 
le_wf, 
istype-int, 
int-value-type, 
nat-mono, 
bottom_wf_function, 
ifthenelse_wf-partial, 
inclusion-partial, 
value-type-has-value, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
btrue_wf, 
bool_wf, 
union-value-type, 
unit_wf2, 
bfalse_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
Error :functionIsType, 
Error :universeIsType, 
applyEquality, 
universeEquality, 
because_Cache, 
Error :isect_memberFormation_alt, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :isect_memberEquality_alt, 
functionEquality, 
independent_isectElimination, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
Error :lambdaFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
callbyvalueReduce, 
addEquality, 
setElimination, 
rename, 
Error :dependent_set_memberEquality_alt, 
unionElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
independent_pairFormation, 
Error :inhabitedIsType, 
Error :equalityIsType1
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[d:a:A  {}\mrightarrow{}  k:\mBbbN{}  {}\mrightarrow{}  Dec(P[a;k])].  \mforall{}[a:A].    (mu-dec(d;a)  \mmember{}  partial(\mBbbN{}))
Date html generated:
2019_06_20-PM-01_17_31
Last ObjectModification:
2018_10_06-AM-11_21_35
Theory : int_2
Home
Index