Nuprl Lemma : omega-shadow-exact1
∀b:ℕ+. ∀c,d:ℤ.  (∃x:ℤ. ((c ≤ x) ∧ ((b * x) ≤ d)) 
⇐⇒ (b * c) ≤ d)
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
nat_plus_wf, 
le_weakening, 
le_wf, 
and_wf, 
exists_wf, 
less_than_wf, 
omega-shadow, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_plus_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_functionElimination, 
multiplyEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
dependent_set_memberEquality, 
introduction, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
because_Cache
Latex:
\mforall{}b:\mBbbN{}\msupplus{}.  \mforall{}c,d:\mBbbZ{}.    (\mexists{}x:\mBbbZ{}.  ((c  \mleq{}  x)  \mwedge{}  ((b  *  x)  \mleq{}  d))  \mLeftarrow{}{}\mRightarrow{}  (b  *  c)  \mleq{}  d)
Date html generated:
2016_05_14-AM-07_23_23
Last ObjectModification:
2016_01_14-PM-10_02_31
Theory : int_2
Home
Index