Nuprl Lemma : sum_split+

[n:ℕ]. ∀[f:ℕn ⟶ ℤ]. ∀[m:ℕ1].
  ((Σ(f[x] x < n) (f[x] x < m) + Σ(f[x m] x < m)) ∈ ℤ)
  ∧ (f[x] x < m) ∈ ℤ)
  ∧ (f[x m] x < m) ∈ ℤ))


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B nat: uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k guard: {T} ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: le: A ≤ B less_than: a < b uiff: uiff(P;Q)
Lemmas referenced :  nat_wf add-member-int_seg1 le_wf int_term_value_subtract_lemma int_formula_prop_le_lemma itermSubtract_wf intformle_wf decidable__le subtract_wf int_seg_wf lelt_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermAdd_wf itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties int_seg_properties int_seg_subtype_nat sum_wf sum_split
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_pairFormation applyEquality natural_numberEquality addEquality setElimination rename independent_isectElimination introduction because_Cache sqequalRule lambdaEquality dependent_set_memberEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll functionEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[m:\mBbbN{}n  +  1].
    ((\mSigma{}(f[x]  |  x  <  n)  =  (\mSigma{}(f[x]  |  x  <  m)  +  \mSigma{}(f[x  +  m]  |  x  <  n  -  m)))
    \mwedge{}  (\mSigma{}(f[x]  |  x  <  m)  \mmember{}  \mBbbZ{})
    \mwedge{}  (\mSigma{}(f[x  +  m]  |  x  <  n  -  m)  \mmember{}  \mBbbZ{}))



Date html generated: 2016_05_14-AM-07_33_27
Last ObjectModification: 2016_01_14-PM-09_54_37

Theory : int_2


Home Index