Nuprl Lemma : map_is_nil

[A,B:Type]. ∀[f:A ⟶ B]. ∀[l:A List].  uiff(map(f;l) [] ∈ (B List);l [] ∈ (A List))


Proof




Definitions occuring in Statement :  map: map(f;as) nil: [] list: List uiff: uiff(P;Q) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q all: x:A. B[x] top: Top uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: not: ¬A false: False
Lemmas referenced :  list_induction uiff_wf equal-wf-T-base list_wf map_wf map_nil_lemma nil_wf equal-wf-base map_cons_lemma null_nil_lemma btrue_wf and_wf equal_wf null_wf null_cons_lemma bfalse_wf btrue_neq_bfalse cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis baseClosed because_Cache independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation lambdaFormation rename productElimination equalitySymmetry dependent_set_memberEquality equalityTransitivity applyLambdaEquality setElimination applyEquality independent_pairEquality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[l:A  List].    uiff(map(f;l)  =  [];l  =  [])



Date html generated: 2019_06_20-PM-00_39_16
Last ObjectModification: 2018_08_07-PM-02_14_00

Theory : list_0


Home Index