Nuprl Lemma : select-filter-from-upto-increasing
∀[n,m:ℤ]. ∀[P:{n..m-} ⟶ 𝔹]. ∀[i,j:ℕ||filter(P;[n, m))||].  filter(P;[n, m))[i] < filter(P;[n, m))[j] supposing i < j
Proof
Definitions occuring in Statement : 
from-upto: [n, m)
, 
select: L[n]
, 
length: ||as||
, 
filter: filter(P;l)
, 
int_seg: {i..j-}
, 
bool: 𝔹
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
prop: ℙ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
select-filter-from-upto-order-preserving, 
int_seg_wf, 
length_wf, 
filter_wf5, 
from-upto_wf, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
list_wf, 
and_wf, 
le_wf, 
less_than_wf, 
subtype_rel_self, 
set_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
natural_numberEquality, 
because_Cache, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
setEquality, 
intEquality, 
independent_isectElimination, 
setElimination, 
rename, 
lambdaFormation, 
functionEquality
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[P:\{n..m\msupminus{}\}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[i,j:\mBbbN{}||filter(P;[n,  m))||].
    filter(P;[n,  m))[i]  <  filter(P;[n,  m))[j]  supposing  i  <  j
Date html generated:
2016_05_14-PM-02_01_13
Last ObjectModification:
2015_12_26-PM-05_12_56
Theory : list_1
Home
Index