Nuprl Lemma : select-filter-from-upto-increasing

[n,m:ℤ]. ∀[P:{n..m-} ⟶ 𝔹]. ∀[i,j:ℕ||filter(P;[n, m))||].  filter(P;[n, m))[i] < filter(P;[n, m))[j] supposing i < j


Proof




Definitions occuring in Statement :  from-upto: [n, m) select: L[n] length: ||as|| filter: filter(P;l) int_seg: {i..j-} bool: 𝔹 less_than: a < b uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k prop: uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  select-filter-from-upto-order-preserving int_seg_wf length_wf filter_wf5 from-upto_wf subtype_rel_dep_function bool_wf l_member_wf list_wf and_wf le_wf less_than_wf subtype_rel_self set_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination natural_numberEquality because_Cache applyEquality sqequalRule lambdaEquality setEquality intEquality independent_isectElimination setElimination rename lambdaFormation functionEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[P:\{n..m\msupminus{}\}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[i,j:\mBbbN{}||filter(P;[n,  m))||].
    filter(P;[n,  m))[i]  <  filter(P;[n,  m))[j]  supposing  i  <  j



Date html generated: 2016_05_14-PM-02_01_13
Last ObjectModification: 2015_12_26-PM-05_12_56

Theory : list_1


Home Index