Nuprl Lemma : select-filter-from-upto-order-preserving
∀[n,m:ℤ]. ∀[P:{n..m-} ⟶ 𝔹]. ∀[i,j:ℕ||filter(P;[n, m))||].  uiff(i < j;filter(P;[n, m))[i] < filter(P;[n, m))[j])
Proof
Definitions occuring in Statement : 
from-upto: [n, m)
, 
select: L[n]
, 
length: ||as||
, 
filter: filter(P;l)
, 
int_seg: {i..j-}
, 
bool: 𝔹
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
istype: istype(T)
, 
int_seg: {i..j-}
, 
guard: {T}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
from-upto: [n, m)
, 
cand: A c∧ B
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
true: True
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
has-value: (a)↓
, 
sq_type: SQType(T)
Lemmas referenced : 
complete-nat-induction, 
all_wf, 
le_wf, 
subtract_wf, 
int_seg_wf, 
bool_wf, 
length_wf, 
filter_wf5, 
from-upto_wf, 
subtype_rel_dep_function, 
l_member_wf, 
iff_wf, 
less_than_wf, 
select_wf, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
istype-nat, 
istype-le, 
istype-less_than, 
lt_int_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
filter_cons_lemma, 
value-type-has-value, 
int-value-type, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
subtype_rel_function, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-associates, 
add-commutes, 
le-add-cancel, 
le_reflexive, 
subtype_rel_self, 
equal-wf-T-base, 
bnot_wf, 
not_wf, 
le_int_wf, 
filter_nil_lemma, 
length_of_nil_lemma, 
stuck-spread, 
istype-base, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
assert_of_bnot, 
subtype_rel_set, 
length_of_cons_lemma, 
set_subtype_base, 
lelt_wf, 
select-cons, 
bnot_of_le_int, 
add-is-int-iff, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
list_wf, 
set_wf, 
satisfiable-full-omega-tt, 
member-less_than, 
subtype_base_sq, 
list_subtype_base, 
from-upto-nil, 
nil_wf, 
less_than_transitivity1, 
less_than_irreflexivity
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
sqequalRule, 
Error :lambdaEquality_alt, 
closedConclusion, 
intEquality, 
because_Cache, 
functionEquality, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
natural_numberEquality, 
applyEquality, 
Error :universeIsType, 
setEquality, 
Error :setIsType, 
independent_isectElimination, 
Error :lambdaFormation_alt, 
productElimination, 
dependent_functionElimination, 
Error :inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
imageElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :functionIsType, 
Error :productIsType, 
baseApply, 
baseClosed, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
minusEquality, 
multiplyEquality, 
equalityElimination, 
Error :equalityIstype, 
callbyvalueReduce, 
pointwiseFunctionality, 
promote_hyp, 
applyLambdaEquality, 
lambdaEquality, 
productEquality, 
lambdaFormation, 
dependent_pairFormation, 
isect_memberEquality, 
voidEquality, 
computeAll, 
isect_memberFormation, 
independent_pairEquality, 
dependent_set_memberEquality, 
instantiate, 
cumulativity
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[P:\{n..m\msupminus{}\}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[i,j:\mBbbN{}||filter(P;[n,  m))||].
    uiff(i  <  j;filter(P;[n,  m))[i]  <  filter(P;[n,  m))[j])
Date html generated:
2019_06_20-PM-01_34_24
Last ObjectModification:
2019_01_21-PM-01_56_58
Theory : list_1
Home
Index