Nuprl Lemma : sort-int-sorted

[T:Type]. ∀[as:T List]. sorted(sort-int(as)) supposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  sort-int: sort-int(as) sorted: sorted(L) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sort-int: sort-int(as) sorted: sorted(L) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: less_than: a < b squash: T subtype_rel: A ⊆B
Lemmas referenced :  length_of_nil_lemma le_weakening2 subtype_rel_wf list_wf int_seg_wf decidable__lt int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le length_wf int_seg_properties sort-int_wf select_wf less_than'_wf nil_wf merge-int-sorted
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality because_Cache cumulativity setElimination rename natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination applyEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality lambdaFormation

Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].  sorted(sort-int(as))  supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2016_05_14-AM-07_36_16
Last ObjectModification: 2016_01_15-AM-08_44_20

Theory : list_1


Home Index