Nuprl Lemma : sort-int-sorted
∀[T:Type]. ∀[as:T List]. sorted(sort-int(as)) supposing T ⊆r ℤ
Proof
Definitions occuring in Statement : 
sort-int: sort-int(as)
, 
sorted: sorted(L)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sort-int: sort-int(as)
, 
sorted: sorted(L)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
length_of_nil_lemma, 
le_weakening2, 
subtype_rel_wf, 
list_wf, 
int_seg_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
length_wf, 
int_seg_properties, 
sort-int_wf, 
select_wf, 
less_than'_wf, 
nil_wf, 
merge-int-sorted
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
because_Cache, 
cumulativity, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
lambdaFormation
Latex:
\mforall{}[T:Type].  \mforall{}[as:T  List].  sorted(sort-int(as))  supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2016_05_14-AM-07_36_16
Last ObjectModification:
2016_01_15-AM-08_44_20
Theory : list_1
Home
Index