Nuprl Lemma : strong-subtype-l_member

[A,B:Type].  ∀L:A List. ∀x:B.  ((x ∈ L)  (x ∈ L)) supposing strong-subtype(A;B)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T implies:  Q all: x:A. B[x] strong-subtype: strong-subtype(A;B) cand: c∧ B prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] l_member: (x ∈ l) nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top and: P ∧ Q guard: {T} label: ...$L... t
Lemmas referenced :  strong-subtype_witness l_member_wf subtype_rel_list list_wf strong-subtype_wf exists_wf equal_wf select_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf strong-subtype-implies less_than_wf length_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis rename lambdaFormation productElimination cumulativity applyEquality independent_isectElimination sqequalRule because_Cache universeEquality dependent_set_memberEquality lambdaEquality dependent_pairFormation setElimination dependent_functionElimination natural_numberEquality unionElimination approximateComputation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation productEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}L:A  List.  \mforall{}x:B.    ((x  \mmember{}  L)  {}\mRightarrow{}  (x  \mmember{}  L))  supposing  strong-subtype(A;B)



Date html generated: 2019_06_20-PM-01_20_20
Last ObjectModification: 2018_09_17-PM-05_54_59

Theory : list_1


Home Index