Nuprl Lemma : strong-subtype-l_member
∀[A,B:Type].  ∀L:A List. ∀x:B.  ((x ∈ L) 
⇒ (x ∈ L)) supposing strong-subtype(A;B)
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
list: T List
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
guard: {T}
, 
label: ...$L... t
Lemmas referenced : 
strong-subtype_witness, 
l_member_wf, 
subtype_rel_list, 
list_wf, 
strong-subtype_wf, 
exists_wf, 
equal_wf, 
select_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
strong-subtype-implies, 
less_than_wf, 
length_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
rename, 
lambdaFormation, 
productElimination, 
cumulativity, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
universeEquality, 
dependent_set_memberEquality, 
lambdaEquality, 
dependent_pairFormation, 
setElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
productEquality
Latex:
\mforall{}[A,B:Type].    \mforall{}L:A  List.  \mforall{}x:B.    ((x  \mmember{}  L)  {}\mRightarrow{}  (x  \mmember{}  L))  supposing  strong-subtype(A;B)
Date html generated:
2019_06_20-PM-01_20_20
Last ObjectModification:
2018_09_17-PM-05_54_59
Theory : list_1
Home
Index