Nuprl Lemma : strong-subtype-l_member
∀[A,B:Type]. ∀L:A List. ∀x:B. ((x ∈ L)
⇒ (x ∈ L)) supposing strong-subtype(A;B)
Proof
Definitions occuring in Statement :
l_member: (x ∈ l)
,
list: T List
,
strong-subtype: strong-subtype(A;B)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
implies: P
⇒ Q
,
all: ∀x:A. B[x]
,
strong-subtype: strong-subtype(A;B)
,
cand: A c∧ B
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
exists: ∃x:A. B[x]
,
l_member: (x ∈ l)
,
nat: ℕ
,
ge: i ≥ j
,
decidable: Dec(P)
,
or: P ∨ Q
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
top: Top
,
and: P ∧ Q
,
guard: {T}
,
label: ...$L... t
Lemmas referenced :
strong-subtype_witness,
l_member_wf,
subtype_rel_list,
list_wf,
strong-subtype_wf,
exists_wf,
equal_wf,
select_wf,
nat_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
strong-subtype-implies,
less_than_wf,
length_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
independent_functionElimination,
hypothesis,
rename,
lambdaFormation,
productElimination,
cumulativity,
applyEquality,
independent_isectElimination,
sqequalRule,
because_Cache,
universeEquality,
dependent_set_memberEquality,
lambdaEquality,
dependent_pairFormation,
setElimination,
dependent_functionElimination,
natural_numberEquality,
unionElimination,
approximateComputation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
productEquality
Latex:
\mforall{}[A,B:Type]. \mforall{}L:A List. \mforall{}x:B. ((x \mmember{} L) {}\mRightarrow{} (x \mmember{} L)) supposing strong-subtype(A;B)
Date html generated:
2019_06_20-PM-01_20_20
Last ObjectModification:
2018_09_17-PM-05_54_59
Theory : list_1
Home
Index