Nuprl Lemma : subtype-l_all
∀[T:Type]. ∀[L:T List]. ∀[P,Q:{x:T| (x ∈ L)}  ⟶ ℙ].
  (∀x∈L.P[x]) ⊆r (∀x∈L.Q[x]) supposing ∀x:T. ((x ∈ L) 
⇒ (P[x] ⊆r Q[x]))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
l_all: (∀x∈L.P[x])
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
subtype_rel_wf, 
l_member_wf, 
all_wf, 
select_member, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
int_seg_properties, 
length_wf, 
int_seg_wf, 
select_wf, 
subtype_rel_dep_function
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
sqequalHypSubstitution, 
hypothesisEquality, 
applyEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
hypothesis, 
natural_numberEquality, 
lambdaFormation, 
dependent_functionElimination, 
setElimination, 
rename, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
independent_functionElimination, 
axiomEquality, 
cumulativity, 
functionEquality, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P,Q:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}x\mmember{}L.P[x])  \msubseteq{}r  (\mforall{}x\mmember{}L.Q[x])  supposing  \mforall{}x:T.  ((x  \mmember{}  L)  {}\mRightarrow{}  (P[x]  \msubseteq{}r  Q[x]))
Date html generated:
2016_05_14-AM-07_47_30
Last ObjectModification:
2016_01_15-AM-08_34_32
Theory : list_1
Home
Index