Nuprl Lemma : subtype-l_all

[T:Type]. ∀[L:T List]. ∀[P,Q:{x:T| (x ∈ L)}  ⟶ ℙ].
  (∀x∈L.P[x]) ⊆(∀x∈L.Q[x]) supposing ∀x:T. ((x ∈ L)  (P[x] ⊆Q[x]))


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a l_all: (∀x∈L.P[x]) subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T
Lemmas referenced :  subtype_rel_wf l_member_wf all_wf select_member int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties length_wf int_seg_wf select_wf subtype_rel_dep_function
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality sqequalHypSubstitution hypothesisEquality applyEquality lemma_by_obid isectElimination thin because_Cache sqequalRule independent_isectElimination hypothesis natural_numberEquality lambdaFormation dependent_functionElimination setElimination rename productElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination independent_functionElimination axiomEquality cumulativity functionEquality dependent_set_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P,Q:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}x\mmember{}L.P[x])  \msubseteq{}r  (\mforall{}x\mmember{}L.Q[x])  supposing  \mforall{}x:T.  ((x  \mmember{}  L)  {}\mRightarrow{}  (P[x]  \msubseteq{}r  Q[x]))



Date html generated: 2016_05_14-AM-07_47_30
Last ObjectModification: 2016_01_15-AM-08_34_32

Theory : list_1


Home Index