Nuprl Lemma : upto_add_1
∀[n:ℕ]. (upto(n + 1) ~ upto(n) @ [n])
Proof
Definitions occuring in Statement :
upto: upto(n)
,
append: as @ bs
,
cons: [a / b]
,
nil: []
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
add: n + m
,
natural_number: $n
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat_plus: ℕ+
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
false: False
,
prop: ℙ
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
subtract: n - m
,
subtype_rel: A ⊆r B
,
top: Top
,
less_than': less_than'(a;b)
,
true: True
Lemmas referenced :
upto_decomp1,
decidable__lt,
false_wf,
not-lt-2,
condition-implies-le,
minus-add,
minus-one-mul,
zero-add,
minus-one-mul-top,
add-commutes,
add_functionality_wrt_le,
add-associates,
add-zero,
le-add-cancel,
less_than_wf,
nat_wf,
add-subtract-cancel
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
dependent_set_memberEquality,
addEquality,
setElimination,
rename,
hypothesisEquality,
hypothesis,
natural_numberEquality,
productElimination,
dependent_functionElimination,
unionElimination,
independent_pairFormation,
lambdaFormation,
voidElimination,
independent_functionElimination,
independent_isectElimination,
applyEquality,
lambdaEquality,
isect_memberEquality,
voidEquality,
intEquality,
because_Cache,
minusEquality,
sqequalAxiom
Latex:
\mforall{}[n:\mBbbN{}]. (upto(n + 1) \msim{} upto(n) @ [n])
Date html generated:
2016_05_14-PM-02_04_06
Last ObjectModification:
2015_12_26-PM-05_10_06
Theory : list_1
Home
Index