Nuprl Lemma : add_reduce_eqmod

m,x,y:ℤ.  ((x y) ≡ mod ⇐⇒ y ≡ mod m)


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m all: x:A. B[x] iff: ⇐⇒ Q add: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q uimplies: supposing a top: Top sq_type: SQType(T) guard: {T}
Lemmas referenced :  eqmod_wf eqmod_weakening minus-one-mul add-swap add-associates add-mul-special zero-mul zero-add add-commutes subtype_base_sq int_subtype_base add_functionality_wrt_eqmod add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality addEquality hypothesis natural_numberEquality intEquality minusEquality dependent_functionElimination independent_isectElimination sqequalRule multiplyEquality isect_memberEquality voidElimination voidEquality because_Cache instantiate cumulativity equalitySymmetry equalityTransitivity independent_functionElimination hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}m,x,y:\mBbbZ{}.    ((x  +  y)  \mequiv{}  x  mod  m  \mLeftarrow{}{}\mRightarrow{}  y  \mequiv{}  0  mod  m)



Date html generated: 2016_10_21-AM-11_09_02
Last ObjectModification: 2016_07_12-AM-06_01_35

Theory : num_thy_1


Home Index