Nuprl Lemma : add_reduce_eqmod
∀m,x,y:ℤ.  ((x + y) ≡ x mod m 
⇐⇒ y ≡ 0 mod m)
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
top: Top
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
eqmod_wf, 
eqmod_weakening, 
minus-one-mul, 
add-swap, 
add-associates, 
add-mul-special, 
zero-mul, 
zero-add, 
add-commutes, 
subtype_base_sq, 
int_subtype_base, 
add_functionality_wrt_eqmod, 
add-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
addEquality, 
hypothesis, 
natural_numberEquality, 
intEquality, 
minusEquality, 
dependent_functionElimination, 
independent_isectElimination, 
sqequalRule, 
multiplyEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
instantiate, 
cumulativity, 
equalitySymmetry, 
equalityTransitivity, 
independent_functionElimination, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}m,x,y:\mBbbZ{}.    ((x  +  y)  \mequiv{}  x  mod  m  \mLeftarrow{}{}\mRightarrow{}  y  \mequiv{}  0  mod  m)
Date html generated:
2016_10_21-AM-11_09_02
Last ObjectModification:
2016_07_12-AM-06_01_35
Theory : num_thy_1
Home
Index