Nuprl Lemma : chrem_exists_a
∀r:ℕ+. ∀s:{s':ℕ+| CoPrime(r,s')} . ∀a,b:ℤ.  (∃x:ℤ [((x ≡ a mod r) ∧ (x ≡ b mod s))])
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m
, 
coprime: CoPrime(a,b)
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
int: ℤ
Definitions unfolded in proof : 
prop: ℙ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
coprime: CoPrime(a,b)
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
uimplies: b supposing a
, 
top: Top
Lemmas referenced : 
nat_plus_wf, 
coprime_wf, 
istype-int, 
sq_stable__coprime, 
chrem_exists_aux_a, 
gcd_p_sym, 
eqmod_wf, 
add-zero, 
zero-mul, 
one-mul, 
mul-commutes, 
multiply_functionality_wrt_eqmod, 
add_functionality_wrt_eqmod, 
eqmod_functionality_wrt_eqmod, 
eqmod_weakening, 
istype-void, 
zero-add
Rules used in proof : 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
Error :universeIsType, 
Error :setIsType, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
hypothesisEquality, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
independent_functionElimination, 
dependent_functionElimination, 
Error :dependent_set_memberEquality_alt, 
natural_numberEquality, 
Error :productIsType, 
independent_pairFormation, 
productElimination, 
multiplyEquality, 
addEquality, 
Error :dependent_set_memberFormation_alt, 
independent_isectElimination, 
voidElimination, 
Error :isect_memberEquality_alt, 
because_Cache
Latex:
\mforall{}r:\mBbbN{}\msupplus{}.  \mforall{}s:\{s':\mBbbN{}\msupplus{}|  CoPrime(r,s')\}  .  \mforall{}a,b:\mBbbZ{}.    (\mexists{}x:\mBbbZ{}  [((x  \mequiv{}  a  mod  r)  \mwedge{}  (x  \mequiv{}  b  mod  s))])
Date html generated:
2019_06_20-PM-02_25_06
Last ObjectModification:
2019_01_17-AM-09_06_59
Theory : num_thy_1
Home
Index