Nuprl Lemma : chrem_exists_a

r:ℕ+. ∀s:{s':ℕ+CoPrime(r,s')} . ∀a,b:ℤ.  (∃x:ℤ [((x ≡ mod r) ∧ (x ≡ mod s))])


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m coprime: CoPrime(a,b) nat_plus: + all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q set: {x:A| B[x]}  int:
Definitions unfolded in proof :  prop: nat_plus: + uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] squash: T implies:  Q sq_stable: SqStable(P) coprime: CoPrime(a,b) sq_exists: x:A [B[x]] and: P ∧ Q rev_implies:  Q iff: ⇐⇒ Q uimplies: supposing a top: Top
Lemmas referenced :  nat_plus_wf coprime_wf istype-int sq_stable__coprime chrem_exists_aux_a gcd_p_sym eqmod_wf add-zero zero-mul one-mul mul-commutes multiply_functionality_wrt_eqmod add_functionality_wrt_eqmod eqmod_functionality_wrt_eqmod eqmod_weakening istype-void zero-add
Rules used in proof :  rename setElimination thin isectElimination sqequalHypSubstitution Error :universeIsType,  Error :setIsType,  hypothesis extract_by_obid introduction cut hypothesisEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution imageElimination baseClosed imageMemberEquality sqequalRule independent_functionElimination dependent_functionElimination Error :dependent_set_memberEquality_alt,  natural_numberEquality Error :productIsType,  independent_pairFormation productElimination multiplyEquality addEquality Error :dependent_set_memberFormation_alt,  independent_isectElimination voidElimination Error :isect_memberEquality_alt,  because_Cache

Latex:
\mforall{}r:\mBbbN{}\msupplus{}.  \mforall{}s:\{s':\mBbbN{}\msupplus{}|  CoPrime(r,s')\}  .  \mforall{}a,b:\mBbbZ{}.    (\mexists{}x:\mBbbZ{}  [((x  \mequiv{}  a  mod  r)  \mwedge{}  (x  \mequiv{}  b  mod  s))])



Date html generated: 2019_06_20-PM-02_25_06
Last ObjectModification: 2019_01_17-AM-09_06_59

Theory : num_thy_1


Home Index