Nuprl Lemma : isqrt-of-square

[z:ℕ]. (isqrt(z z) z ∈ ℤ)


Proof




Definitions occuring in Statement :  isqrt: isqrt(x) nat: uall: [x:A]. B[x] multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: prop: all: x:A. B[x] implies:  Q and: P ∧ Q decidable: Dec(P) or: P ∨ Q ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top
Lemmas referenced :  nat_wf isqrt-property mul_bounds_1a le_wf isqrt_wf less_than_wf equal_wf decidable__lt nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermAdd_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf mul_preserves_le itermMultiply_wf int_term_value_mul_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__equal_int intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut hypothesis Error :universeIsType,  introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality multiplyEquality setElimination rename hypothesisEquality because_Cache natural_numberEquality lambdaFormation productElimination productEquality addEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination unionElimination independent_isectElimination approximateComputation dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation

Latex:
\mforall{}[z:\mBbbN{}].  (isqrt(z  *  z)  =  z)



Date html generated: 2019_06_20-PM-02_37_12
Last ObjectModification: 2019_06_12-PM-00_26_02

Theory : num_thy_1


Home Index