Nuprl Lemma : sign-squared
∀[x:ℤ]. ((sign(x) * sign(x)) = 1 ∈ ℤ)
Proof
Definitions occuring in Statement : 
sign: sign(x)
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
sign: sign(x)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
guard: {T}
Lemmas referenced : 
le_int_wf, 
bool_wf, 
equal-wf-base, 
int_subtype_base, 
assert_wf, 
le_wf, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
lt_int_wf, 
less_than_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
hypothesis, 
intEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
minusEquality, 
lambdaFormation, 
equalityElimination, 
independent_functionElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x:\mBbbZ{}].  ((sign(x)  *  sign(x))  =  1)
Date html generated:
2017_04_17-AM-09_45_32
Last ObjectModification:
2017_02_27-PM-05_40_00
Theory : num_thy_1
Home
Index