Nuprl Lemma : sign-squared

[x:ℤ]. ((sign(x) sign(x)) 1 ∈ ℤ)


Proof




Definitions occuring in Statement :  sign: sign(x) uall: [x:A]. B[x] multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] sign: sign(x) member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff guard: {T}
Lemmas referenced :  le_int_wf bool_wf equal-wf-base int_subtype_base assert_wf le_wf decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermMultiply_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_wf lt_int_wf less_than_wf bnot_wf uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut hypothesis intEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality sqequalRule baseApply closedConclusion baseClosed applyEquality because_Cache dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality isect_memberEquality voidElimination voidEquality computeAll minusEquality lambdaFormation equalityElimination independent_functionElimination productElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x:\mBbbZ{}].  ((sign(x)  *  sign(x))  =  1)



Date html generated: 2017_04_17-AM-09_45_32
Last ObjectModification: 2017_02_27-PM-05_40_00

Theory : num_thy_1


Home Index