Nuprl Lemma : small-eqmod-odd
∀m:ℕ+. ((↑isOdd(m)) 
⇒ (∀a:ℤ. ∃b:ℤ. (2 * |b| < m ∧ (b ≡ a mod m))))
Proof
Definitions occuring in Statement : 
isOdd: isOdd(n)
, 
eqmod: a ≡ b mod m
, 
absval: |i|
, 
nat_plus: ℕ+
, 
assert: ↑b
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
sq_type: SQType(T)
, 
guard: {T}
, 
prop: ℙ
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
nat: ℕ
, 
le: A ≤ B
, 
false: False
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
nat_plus_wf, 
isOdd_wf, 
assert_wf, 
eqmod_wf, 
less_than_wf, 
int_subtype_base, 
subtype_base_sq, 
odd-implies, 
false_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
nat_wf, 
decidable__equal_int, 
nat_plus_properties, 
absval_wf, 
decidable__lt, 
small-eqmod, 
equal-wf-base, 
assert-isEven
Rules used in proof : 
productEquality, 
cumulativity, 
instantiate, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
lambdaEquality, 
promote_hyp, 
equalitySymmetry, 
equalityTransitivity, 
pointwiseFunctionality, 
unionElimination, 
rename, 
setElimination, 
sqequalRule, 
because_Cache, 
applyEquality, 
hypothesis, 
isectElimination, 
natural_numberEquality, 
multiplyEquality, 
dependent_pairFormation, 
productElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
baseClosed, 
closedConclusion, 
baseApply
Latex:
\mforall{}m:\mBbbN{}\msupplus{}.  ((\muparrow{}isOdd(m))  {}\mRightarrow{}  (\mforall{}a:\mBbbZ{}.  \mexists{}b:\mBbbZ{}.  (2  *  |b|  <  m  \mwedge{}  (b  \mequiv{}  a  mod  m))))
Date html generated:
2018_05_21-PM-00_56_07
Last ObjectModification:
2017_12_31-PM-07_41_57
Theory : num_thy_1
Home
Index