Nuprl Lemma : per-class-base-singleton
∀[T:Type]. ∀[a:T].  per-class(T;a) ≡ Base ⋂ {x:T| x = a ∈ T} 
Proof
Definitions occuring in Statement : 
per-class: per-class(T;a)
, 
isect2: T1 ⋂ T2
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
base: Base
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
isect2: T1 ⋂ T2
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
per-class: per-class(T;a)
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
cand: A c∧ B
, 
squash: ↓T
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
per-class_wf, 
subtype_rel_b-union-right, 
base_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
per-class-subtype-singleton, 
isect2_decomp, 
isect2_wf, 
equal-wf-base-T
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
lambdaEquality, 
isect_memberEquality, 
hypothesisEquality, 
applyEquality, 
thin, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
setElimination, 
rename, 
cumulativity, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
independent_pairEquality, 
axiomEquality, 
universeEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:T].    per-class(T;a)  \mequiv{}  Base  \mcap{}  \{x:T|  x  =  a\} 
Date html generated:
2017_04_14-AM-07_37_04
Last ObjectModification:
2017_02_27-PM-03_09_17
Theory : subtype_1
Home
Index