Nuprl Lemma : per-class-base-singleton

[T:Type]. ∀[a:T].  per-class(T;a) ≡ Base ⋂ {x:T| a ∈ T} 


Proof




Definitions occuring in Statement :  per-class: per-class(T;a) isect2: T1 ⋂ T2 ext-eq: A ≡ B uall: [x:A]. B[x] set: {x:A| B[x]}  base: Base universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q isect2: T1 ⋂ T2 subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  per-class: per-class(T;a) bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False cand: c∧ B squash: T
Lemmas referenced :  bool_wf eqtt_to_assert per-class_wf subtype_rel_b-union-right base_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot per-class-subtype-singleton isect2_decomp isect2_wf equal-wf-base-T
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule lambdaEquality isect_memberEquality hypothesisEquality applyEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination because_Cache productElimination independent_isectElimination setElimination rename cumulativity dependent_pairFormation promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination equalityTransitivity equalitySymmetry setEquality independent_pairEquality axiomEquality universeEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:T].    per-class(T;a)  \mequiv{}  Base  \mcap{}  \{x:T|  x  =  a\} 



Date html generated: 2017_04_14-AM-07_37_04
Last ObjectModification: 2017_02_27-PM-03_09_17

Theory : subtype_1


Home Index