Nuprl Lemma : prec-sub+-size

[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P Type) List)]. ∀[j:P]. ∀[x:prec(lbl,p.a[lbl;p];j)]. ∀[i:P].
[y:prec(lbl,p.a[lbl;p];i)].
  ||j;x|| < ||i;y|| supposing prec_sub+(P;lbl,p.a[lbl;p]) <j, x> <i, y>


Proof




Definitions occuring in Statement :  prec_sub+: prec_sub+(P;lbl,p.a[lbl; p]) prec-size: ||i;x|| prec: prec(lbl,p.a[lbl; p];i) list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] apply: a function: x:A ⟶ B[x] pair: <a, b> union: left right atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B implies:  Q all: x:A. B[x] infix_ap: y rel_plus: R+ exists: x:A. B[x] prec_sub+: prec_sub+(P;lbl,p.a[lbl; p]) less_than: a < b squash: T prop: nat: trans: Trans(T;x,y.E[x; y]) decidable: Dec(P) or: P ∨ Q and: P ∧ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prec_sub: prec_sub(P;lbl,p.a[lbl; p])
Lemmas referenced :  rel_plus_closure prec_wf istype-atom prec_sub_wf less_than_wf prec-size_wf prec_sub+_wf subtype_rel_self member-less_than list_wf istype-universe decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf istype-less_than prec-sub-size
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality sqequalRule Error :lambdaEquality_alt,  applyEquality Error :inhabitedIsType,  hypothesis spreadEquality because_Cache Error :productIsType,  Error :universeIsType,  independent_functionElimination Error :lambdaFormation_alt,  dependent_functionElimination Error :dependent_pairEquality_alt,  instantiate universeEquality Error :isect_memberEquality_alt,  setElimination rename equalityTransitivity equalitySymmetry independent_isectElimination Error :isectIsTypeImplies,  Error :functionIsType,  unionEquality cumulativity productElimination unionElimination imageElimination natural_numberEquality approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality voidElimination independent_pairFormation

Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[j:P].  \mforall{}[x:prec(lbl,p.a[lbl;p];j)].  \mforall{}[i:P].
\mforall{}[y:prec(lbl,p.a[lbl;p];i)].
    ||j;x||  <  ||i;y||  supposing  prec\_sub+(P;lbl,p.a[lbl;p])  <j,  x>  <i,  y>



Date html generated: 2019_06_20-PM-02_14_25
Last ObjectModification: 2019_02_23-PM-05_06_12

Theory : tuples


Home Index