Nuprl Lemma : prec-sub+-size
∀[P:Type]. ∀[a:Atom ⟶ P ⟶ ((P + P + Type) List)]. ∀[j:P]. ∀[x:prec(lbl,p.a[lbl;p];j)]. ∀[i:P].
∀[y:prec(lbl,p.a[lbl;p];i)].
  ||j;x|| < ||i;y|| supposing prec_sub+(P;lbl,p.a[lbl;p]) <j, x> <i, y>
Proof
Definitions occuring in Statement : 
prec_sub+: prec_sub+(P;lbl,p.a[lbl; p])
, 
prec-size: ||i;x||
, 
prec: prec(lbl,p.a[lbl; p];i)
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
union: left + right
, 
atom: Atom
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
infix_ap: x f y
, 
rel_plus: R+
, 
exists: ∃x:A. B[x]
, 
prec_sub+: prec_sub+(P;lbl,p.a[lbl; p])
, 
less_than: a < b
, 
squash: ↓T
, 
prop: ℙ
, 
nat: ℕ
, 
trans: Trans(T;x,y.E[x; y])
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
prec_sub: prec_sub(P;lbl,p.a[lbl; p])
Lemmas referenced : 
rel_plus_closure, 
prec_wf, 
istype-atom, 
prec_sub_wf, 
less_than_wf, 
prec-size_wf, 
prec_sub+_wf, 
subtype_rel_self, 
member-less_than, 
list_wf, 
istype-universe, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-less_than, 
prec-sub-size
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
applyEquality, 
Error :inhabitedIsType, 
hypothesis, 
spreadEquality, 
because_Cache, 
Error :productIsType, 
Error :universeIsType, 
independent_functionElimination, 
Error :lambdaFormation_alt, 
dependent_functionElimination, 
Error :dependent_pairEquality_alt, 
instantiate, 
universeEquality, 
Error :isect_memberEquality_alt, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
Error :isectIsTypeImplies, 
Error :functionIsType, 
unionEquality, 
cumulativity, 
productElimination, 
unionElimination, 
imageElimination, 
natural_numberEquality, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
independent_pairFormation
Latex:
\mforall{}[P:Type].  \mforall{}[a:Atom  {}\mrightarrow{}  P  {}\mrightarrow{}  ((P  +  P  +  Type)  List)].  \mforall{}[j:P].  \mforall{}[x:prec(lbl,p.a[lbl;p];j)].  \mforall{}[i:P].
\mforall{}[y:prec(lbl,p.a[lbl;p];i)].
    ||j;x||  <  ||i;y||  supposing  prec\_sub+(P;lbl,p.a[lbl;p])  <j,  x>  <i,  y>
Date html generated:
2019_06_20-PM-02_14_25
Last ObjectModification:
2019_02_23-PM-05_06_12
Theory : tuples
Home
Index