Nuprl Lemma : Formco_wf
∀[C:Type]. (Formco(C) ∈ Type)
Proof
Definitions occuring in Statement :
Formco: Formco(C)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
Formco: Formco(C)
,
so_lambda: λ2x.t[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
so_apply: x[s]
Lemmas referenced :
corec_wf,
eq_atom_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_atom,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_atom
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
lambdaEquality,
productEquality,
atomEquality,
hypothesisEquality,
tokenEquality,
hypothesis,
lambdaFormation,
unionElimination,
equalityElimination,
productElimination,
independent_isectElimination,
because_Cache,
equalityTransitivity,
equalitySymmetry,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
instantiate,
cumulativity,
independent_functionElimination,
voidElimination,
voidEquality,
universeEquality,
axiomEquality
Latex:
\mforall{}[C:Type]. (Formco(C) \mmember{} Type)
Date html generated:
2018_05_21-PM-10_41_55
Last ObjectModification:
2017_10_13-PM-06_54_21
Theory : PZF
Home
Index