Nuprl Lemma : wfFormAux-unique
∀[C:Type]. ∀[f:Form(C)]. ∀[b:𝔹].  ((↑(wfFormAux(f) b)) ⇒ termForm(f) = b)
Proof
Definitions occuring in Statement : 
termForm: termForm(f), 
wfFormAux: wfFormAux(f), 
Form: Form(C), 
assert: ↑b, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
apply: f a, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
termForm: termForm(f), 
wfFormAux: wfFormAux(f), 
FormVar: Vname, 
Form_ind: Form_ind, 
uimplies: b supposing a, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
true: True, 
FormConst: Const(value), 
FormSet: {var | phi}, 
or: P ∨ Q, 
band: p ∧b q, 
bfalse: ff, 
false: False, 
FormEqual: left = right, 
bnot: ¬bb, 
not: ¬A, 
FormMember: element ∈ set, 
FormAnd: left ∧ right), 
FormOr: left ∨ right, 
FormNot: ¬(body), 
FormAll: ∀var. body, 
FormExists: ∃var. body, 
guard: {T}
Lemmas referenced : 
assert_wf, 
wfFormAux_wf, 
bool_wf, 
Form_wf, 
Form-induction, 
all_wf, 
equal_wf, 
termForm_wf, 
iff_imp_equal_bool, 
btrue_wf, 
true_wf, 
bool_cases_sqequal, 
band_wf, 
bfalse_wf, 
false_wf, 
assert_elim, 
bnot_wf, 
and_wf, 
btrue_neq_bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
extract_by_obid, 
isectElimination, 
applyEquality, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
functionEquality, 
independent_isectElimination, 
independent_pairFormation, 
natural_numberEquality, 
atomEquality, 
unionElimination, 
voidElimination, 
addLevel, 
levelHypothesis, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination
Latex:
\mforall{}[C:Type].  \mforall{}[f:Form(C)].  \mforall{}[b:\mBbbB{}].    ((\muparrow{}(wfFormAux(f)  b))  {}\mRightarrow{}  termForm(f)  =  b)
Date html generated:
2018_05_21-PM-11_27_00
Last ObjectModification:
2017_10_12-PM-05_32_12
Theory : PZF
Home
Index