Nuprl Lemma : Form-induction
∀[C:Type]. ∀[P:Form(C) ⟶ ℙ].
  ((∀name:Atom. P[Vname])
  ⇒ (∀value:C. P[Const(value)])
  ⇒ (∀var:Atom. ∀phi:Form(C).  (P[phi] ⇒ P[{var | phi}]))
  ⇒ (∀left,right:Form(C).  (P[left] ⇒ P[right] ⇒ P[left = right]))
  ⇒ (∀element,set:Form(C).  (P[element] ⇒ P[set] ⇒ P[element ∈ set]))
  ⇒ (∀left,right:Form(C).  (P[left] ⇒ P[right] ⇒ P[left ∧ right)]))
  ⇒ (∀left,right:Form(C).  (P[left] ⇒ P[right] ⇒ P[left ∨ right]))
  ⇒ (∀body:Form(C). (P[body] ⇒ P[¬(body)]))
  ⇒ (∀var:Atom. ∀body:Form(C).  (P[body] ⇒ P[∀var. body]))
  ⇒ (∀var:Atom. ∀body:Form(C).  (P[body] ⇒ P[∃var. body]))
  ⇒ {∀v:Form(C). P[v]})
Proof
Definitions occuring in Statement : 
FormExists: ∃var. body, 
FormAll: ∀var. body, 
FormNot: ¬(body), 
FormOr: left ∨ right, 
FormAnd: left ∧ right), 
FormMember: element ∈ set, 
FormEqual: left = right, 
FormSet: {var | phi}, 
FormConst: Const(value), 
FormVar: Vname, 
Form: Form(C), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
atom: Atom, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
false: False, 
ext-eq: A ≡ B, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
FormVar: Vname, 
Form_size: Form_size(p), 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
bnot: ¬bb, 
assert: ↑b, 
FormConst: Const(value), 
FormSet: {var | phi}, 
pi2: snd(t), 
pi1: fst(t), 
cand: A c∧ B, 
ge: i ≥ j , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
FormEqual: left = right, 
FormMember: element ∈ set, 
FormAnd: left ∧ right), 
FormOr: left ∨ right, 
FormNot: ¬(body), 
FormAll: ∀var. body, 
FormExists: ∃var. body
Lemmas referenced : 
uniform-comp-nat-induction, 
all_wf, 
Form_wf, 
isect_wf, 
le_wf, 
Form_size_wf, 
nat_wf, 
less_than'_wf, 
Form-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
subtract_wf, 
decidable__le, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
lelt_wf, 
uall_wf, 
int_seg_wf, 
FormExists_wf, 
FormAll_wf, 
FormNot_wf, 
FormOr_wf, 
FormAnd_wf, 
FormMember_wf, 
FormEqual_wf, 
FormSet_wf, 
FormConst_wf, 
FormVar_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
setElimination, 
rename, 
functionExtensionality, 
independent_functionElimination, 
productElimination, 
independent_pairEquality, 
dependent_functionElimination, 
voidElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
hypothesis_subsumption, 
tokenEquality, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
instantiate, 
atomEquality, 
dependent_pairFormation, 
applyLambdaEquality, 
natural_numberEquality, 
approximateComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
imageElimination, 
functionEquality, 
universeEquality
Latex:
\mforall{}[C:Type].  \mforall{}[P:Form(C)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}name:Atom.  P[Vname])
    {}\mRightarrow{}  (\mforall{}value:C.  P[Const(value)])
    {}\mRightarrow{}  (\mforall{}var:Atom.  \mforall{}phi:Form(C).    (P[phi]  {}\mRightarrow{}  P[\{var  |  phi\}]))
    {}\mRightarrow{}  (\mforall{}left,right:Form(C).    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[left  =  right]))
    {}\mRightarrow{}  (\mforall{}element,set:Form(C).    (P[element]  {}\mRightarrow{}  P[set]  {}\mRightarrow{}  P[element  \mmember{}  set]))
    {}\mRightarrow{}  (\mforall{}left,right:Form(C).    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[left  \mwedge{}  right)]))
    {}\mRightarrow{}  (\mforall{}left,right:Form(C).    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[left  \mvee{}  right]))
    {}\mRightarrow{}  (\mforall{}body:Form(C).  (P[body]  {}\mRightarrow{}  P[\mneg{}(body)]))
    {}\mRightarrow{}  (\mforall{}var:Atom.  \mforall{}body:Form(C).    (P[body]  {}\mRightarrow{}  P[\mforall{}var.  body]))
    {}\mRightarrow{}  (\mforall{}var:Atom.  \mforall{}body:Form(C).    (P[body]  {}\mRightarrow{}  P[\mexists{}var.  body]))
    {}\mRightarrow{}  \{\mforall{}v:Form(C).  P[v]\})
Date html generated:
2018_05_21-PM-11_25_43
Last ObjectModification:
2017_10_13-PM-07_02_58
Theory : PZF
Home
Index