Nuprl Lemma : bag-equality

[A,B:Type]. ∀[f,g:bag(A) ⟶ bag(B)].  ∀[b:bag(A)]. (f[b] g[b] ∈ bag(B)) supposing ∀[b:A List]. (f[b] g[b] ∈ bag(B))


Proof




Definitions occuring in Statement :  bag: bag(T) list: List uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] squash: T so_apply: x[s] subtype_rel: A ⊆B true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q prop: so_lambda: λ2x.t[x]
Lemmas referenced :  bag_wf list_wf quotient-member-eq permutation_wf permutation-equiv equal_wf list-subtype-bag iff_weakening_equal equal-wf-base uall_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry lambdaFormation because_Cache rename lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination applyEquality imageElimination functionExtensionality natural_numberEquality imageMemberEquality baseClosed hyp_replacement applyLambdaEquality productEquality isect_memberEquality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f,g:bag(A)  {}\mrightarrow{}  bag(B)].
    \mforall{}[b:bag(A)].  (f[b]  =  g[b])  supposing  \mforall{}[b:A  List].  (f[b]  =  g[b])



Date html generated: 2017_10_01-AM-08_44_53
Last ObjectModification: 2017_07_26-PM-04_30_24

Theory : bags


Home Index