Nuprl Lemma : bag-equality
∀[A,B:Type]. ∀[f,g:bag(A) ⟶ bag(B)].  ∀[b:bag(A)]. (f[b] = g[b] ∈ bag(B)) supposing ∀[b:A List]. (f[b] = g[b] ∈ bag(B))
Proof
Definitions occuring in Statement : 
bag: bag(T)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
squash: ↓T
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
bag_wf, 
list_wf, 
quotient-member-eq, 
permutation_wf, 
permutation-equiv, 
equal_wf, 
list-subtype-bag, 
iff_weakening_equal, 
equal-wf-base, 
uall_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
because_Cache, 
rename, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
imageElimination, 
functionExtensionality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality, 
productEquality, 
isect_memberEquality, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f,g:bag(A)  {}\mrightarrow{}  bag(B)].
    \mforall{}[b:bag(A)].  (f[b]  =  g[b])  supposing  \mforall{}[b:A  List].  (f[b]  =  g[b])
Date html generated:
2017_10_01-AM-08_44_53
Last ObjectModification:
2017_07_26-PM-04_30_24
Theory : bags
Home
Index