Nuprl Lemma : bag-null-append

[T:Type]. ∀[as,bs:bag(T)].  bag-null(as bs) bag-null(as) ∧b bag-null(bs)


Proof




Definitions occuring in Statement :  bag-null: bag-null(bs) bag-append: as bs bag: bag(T) band: p ∧b q bool: 𝔹 uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T exists: x:A. B[x] bag-null: bag-null(bs) bag-append: as bs subtype_rel: A ⊆B uimplies: supposing a top: Top all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q bfalse: ff prop:
Lemmas referenced :  bag_to_squash_list null_append subtype_rel_list top_wf null_wf bool_wf eqtt_to_assert assert_of_null equal_wf bag-null_wf bag-append_wf list-subtype-bag band_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality imageElimination productElimination promote_hyp hypothesis rename sqequalRule applyEquality independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality because_Cache cumulativity lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination hyp_replacement applyLambdaEquality axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:bag(T)].    bag-null(as  +  bs)  =  bag-null(as)  \mwedge{}\msubb{}  bag-null(bs)



Date html generated: 2017_10_01-AM-08_45_34
Last ObjectModification: 2017_07_26-PM-04_30_49

Theory : bags


Home Index