Nuprl Lemma : bag_all-cons
∀[T:Type]. ∀[x:T]. ∀[b:bag(T)]. ∀[f:T ⟶ 𝔹].  (bag_all(x.b;f) ~ (f x) ∧b bag_all(b;f))
Proof
Definitions occuring in Statement : 
bag_all: bag_all(b;f), 
cons-bag: x.b, 
bag: bag(T), 
band: p ∧b q, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
squash: ↓T, 
exists: ∃x:A. B[x], 
bag_all: bag_all(b;f), 
cons-bag: x.b, 
bag-accum: bag-accum(v,x.f[v; x];init;bs), 
all: ∀x:A. B[x], 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
implies: P ⇒ Q, 
sq_type: SQType(T), 
guard: {T}, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
bfalse: ff, 
prop: ℙ, 
uiff: uiff(P;Q), 
and: P ∧ Q
Lemmas referenced : 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
bag_to_squash_list, 
list_accum_cons_lemma, 
btrue_wf, 
band-btrue, 
list_induction, 
all_wf, 
equal_wf, 
list_accum_wf, 
eqtt_to_assert, 
list_wf, 
list_accum_nil_lemma, 
band_assoc, 
band_wf, 
bag_all_wf, 
cons-bag_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
rename, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
equalitySymmetry, 
equalityTransitivity, 
independent_functionElimination, 
applyEquality, 
functionExtensionality, 
lambdaEquality, 
unionElimination, 
equalityElimination, 
hyp_replacement, 
applyLambdaEquality, 
sqequalAxiom, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[b:bag(T)].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbB{}].    (bag\_all(x.b;f)  \msim{}  (f  x)  \mwedge{}\msubb{}  bag\_all(b;f))
Date html generated:
2017_10_01-AM-08_52_23
Last ObjectModification:
2017_07_26-PM-04_33_58
Theory : bags
Home
Index