Nuprl Lemma : bag_all-cons

[T:Type]. ∀[x:T]. ∀[b:bag(T)]. ∀[f:T ⟶ 𝔹].  (bag_all(x.b;f) (f x) ∧b bag_all(b;f))


Proof




Definitions occuring in Statement :  bag_all: bag_all(b;f) cons-bag: x.b bag: bag(T) band: p ∧b q bool: 𝔹 uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T exists: x:A. B[x] bag_all: bag_all(b;f) cons-bag: x.b bag-accum: bag-accum(v,x.f[v; x];init;bs) all: x:A. B[x] top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] band: p ∧b q ifthenelse: if then else fi  btrue: tt implies:  Q sq_type: SQType(T) guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] bool: 𝔹 unit: Unit it: bfalse: ff prop: uiff: uiff(P;Q) and: P ∧ Q
Lemmas referenced :  subtype_base_sq bool_wf bool_subtype_base bag_to_squash_list list_accum_cons_lemma btrue_wf band-btrue list_induction all_wf equal_wf list_accum_wf eqtt_to_assert list_wf list_accum_nil_lemma band_assoc band_wf bag_all_wf cons-bag_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination because_Cache hypothesisEquality imageElimination productElimination promote_hyp rename sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation equalitySymmetry equalityTransitivity independent_functionElimination applyEquality functionExtensionality lambdaEquality unionElimination equalityElimination hyp_replacement applyLambdaEquality sqequalAxiom functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[b:bag(T)].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbB{}].    (bag\_all(x.b;f)  \msim{}  (f  x)  \mwedge{}\msubb{}  bag\_all(b;f))



Date html generated: 2017_10_01-AM-08_52_23
Last ObjectModification: 2017_07_26-PM-04_33_58

Theory : bags


Home Index