Nuprl Lemma : sub-bag-mapfilter-implies
∀[A,B:Type].
  ∀as:bag(A). ∀bs:bag(B). ∀f:A ⟶ B. ∀P:A ⟶ 𝔹.  (sub-bag(B;bag-map(f;as);bs) 
⇒ sub-bag(B;bag-mapfilter(f;P;as);bs))
Proof
Definitions occuring in Statement : 
sub-bag: sub-bag(T;as;bs)
, 
bag-mapfilter: bag-mapfilter(f;P;bs)
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sub-bag: sub-bag(T;as;bs)
, 
bag-mapfilter: bag-mapfilter(f;P;bs)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
Lemmas referenced : 
bag-filter-split, 
equal_wf, 
bag_wf, 
bag-append_wf, 
bag-map_wf, 
bag-map-append, 
bag-filter_wf, 
subtype_rel_bag, 
top_wf, 
assert_wf, 
bnot_wf, 
subtype_rel_dep_function, 
set_wf, 
bag-append-assoc, 
sub-bag_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalitySymmetry, 
hypothesis, 
hyp_replacement, 
Error :applyLambdaEquality, 
cumulativity, 
equalityTransitivity, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
setEquality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
dependent_pairFormation, 
setElimination, 
rename, 
functionEquality
Latex:
\mforall{}[A,B:Type].
    \mforall{}as:bag(A).  \mforall{}bs:bag(B).  \mforall{}f:A  {}\mrightarrow{}  B.  \mforall{}P:A  {}\mrightarrow{}  \mBbbB{}.
        (sub-bag(B;bag-map(f;as);bs)  {}\mRightarrow{}  sub-bag(B;bag-mapfilter(f;P;as);bs))
Date html generated:
2016_10_25-AM-10_38_00
Last ObjectModification:
2016_07_12-AM-06_51_32
Theory : bags
Home
Index