Nuprl Lemma : sub-bag_antisymmetry
∀[T:Type]. ∀[as,bs:bag(T)].  (as = bs ∈ bag(T)) supposing (sub-bag(T;as;bs) and sub-bag(T;bs;as))
Proof
Definitions occuring in Statement : 
sub-bag: sub-bag(T;as;bs)
, 
bag: bag(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
sub-bag: sub-bag(T;as;bs)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
top: Top
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
empty-bag: {}
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
Lemmas referenced : 
bag-subtype-list, 
bag-append-empty, 
int_formula_prop_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
intformeq_wf, 
intformnot_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
le_wf, 
nat_properties, 
decidable__le, 
bag-size-zero, 
bag-append_wf, 
equal_wf, 
bag_wf, 
exists_wf, 
bag-size-append, 
nat_wf, 
bag-size_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
applyEquality, 
lambdaEquality, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
setEquality, 
intEquality, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:bag(T)].    (as  =  bs)  supposing  (sub-bag(T;as;bs)  and  sub-bag(T;bs;as))
Date html generated:
2016_05_15-PM-02_35_51
Last ObjectModification:
2016_01_16-AM-08_52_13
Theory : bags
Home
Index