Nuprl Lemma : fan-realizer_test

k:ℕ. ∀f:ℕ ⟶ 𝔹. ∃n:ℕk. ((λl.(3 ≤ ||l||)) map(f;upto(n)))


Proof




Definitions occuring in Statement :  upto: upto(n) length: ||as|| map: map(f;as) int_seg: {i..j-} nat: bool: 𝔹 le: A ≤ B all: x:A. B[x] exists: x:A. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] implies:  Q tbar: tbar(T;X) all: x:A. B[x] dec-predicate: Decidable(X) exists: x:A. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: squash: T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  map_wf length_upto iff_weakening_equal upto_wf subtype_rel_self int_seg_subtype_nat subtype_rel_dep_function int_seg_wf map_length_nat true_wf squash_wf false_wf decidable__le nat_wf list_wf bool_wf length_wf le_wf fan-realizer_wf
Rules used in proof :  cut lemma_by_obid comment introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalHypSubstitution equalityTransitivity hypothesis equalitySymmetry isectElimination thin lambdaEquality natural_numberEquality hypothesisEquality independent_functionElimination sqequalRule lambdaFormation functionEquality dependent_functionElimination dependent_pairFormation dependent_set_memberEquality independent_pairFormation applyEquality imageElimination intEquality because_Cache independent_isectElimination setElimination rename imageMemberEquality baseClosed universeEquality productElimination

Latex:
\mexists{}k:\mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}k.  ((\mlambda{}l.(3  \mleq{}  ||l||))  map(f;upto(n)))



Date html generated: 2016_05_15-PM-10_05_26
Last ObjectModification: 2016_01_16-PM-04_05_34

Theory : bar!induction


Home Index