Nuprl Lemma : fan-realizer_wf

fan-realizer ∈ ∀[X:(𝔹 List) ⟶ ℙ]. (tbar(𝔹;X)  Decidable(X)  (∃k:ℕ. ∀f:ℕ ⟶ 𝔹. ∃n:ℕk. (X map(f;upto(n)))))


Proof




Definitions occuring in Statement :  fan-realizer: fan-realizer tbar: tbar(T;X) dec-predicate: Decidable(X) upto: upto(n) map: map(f;as) list: List int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  member: t ∈ T fan-theorem simple-fan-theorem simple_fan_theorem basic_bar_induction uall: [x:A]. B[x] so_lambda: so_lambda4 so_apply: x[s1;s2;s3;s4] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: or: P ∨ Q squash: T false: False seq-normalize: seq-normalize(n;s) fan-realizer: fan-realizer bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) true: True not: ¬A bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q pi1: fst(t) nat: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B
Lemmas referenced :  fan-theorem lifting-strict-less value-type-has-value int-value-type has-value_wf_base istype-base istype-universe exception-not-value is-exception_wf strictness-apply lt_int_wf eqtt_to_assert assert_of_lt_int istype-top bottom-sqle eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than bottom_diverge exception-not-bottom dec-predicate_wf list_wf tbar_wf nat_wf set-value-type le_wf istype-int istype-nat int_seg_wf map_wf upto_wf subtype_rel_function int_seg_subtype_nat istype-false subtype_rel_self simple-fan-theorem simple_fan_theorem basic_bar_induction
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity instantiate extract_by_obid hypothesis sqequalHypSubstitution sqequalRule introduction isectElimination thin baseClosed Error :memTop,  independent_isectElimination independent_pairFormation lambdaFormation_alt callbyvalueAdd baseApply closedConclusion hypothesisEquality productElimination intEquality because_Cache universeIsType addExceptionCases exceptionSqequal inlFormation_alt imageMemberEquality imageElimination sqleReflexivity independent_functionElimination voidElimination isect_memberEquality_alt lambdaEquality_alt sqequalSqle divergentSqle callbyvalueLess inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry lessCases isect_memberFormation_alt axiomSqEquality isectIsTypeImplies natural_numberEquality dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination cumulativity lessExceptionCases axiomSqleEquality callbyvalueCallbyvalue callbyvalueReduce callbyvalueExceptionCases functionIsType universeEquality applyEquality isectIsType productIsType setElimination rename productEquality functionEquality

Latex:
fan-realizer  \mmember{}  \mforall{}[X:(\mBbbB{}  List)  {}\mrightarrow{}  \mBbbP{}]
                                  (tbar(\mBbbB{};X)  {}\mRightarrow{}  Decidable(X)  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}k.  (X  map(f;upto(n)))))



Date html generated: 2020_05_20-AM-09_07_38
Last ObjectModification: 2020_01_10-PM-03_32_46

Theory : bar!induction


Home Index