Nuprl Lemma : ni-eventually-equal_wf
∀[f,g:ℕ∞].  (ni-eventually-equal(f;g) ∈ ℙ)
Proof
Definitions occuring in Statement : 
ni-eventually-equal: ni-eventually-equal(f;g), 
nat-inf: ℕ∞, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
nat-inf: ℕ∞, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ni-eventually-equal: ni-eventually-equal(f;g), 
so_lambda: λ2x.t[x], 
nat: ℕ, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
prop: ℙ, 
implies: P ⇒ Q, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
and: P ∧ Q
Lemmas referenced : 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
assert_wf, 
nat_wf, 
set_wf, 
int_upper_subtype_nat, 
bool_wf, 
equal_wf, 
int_upper_wf, 
all_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}[f,g:\mBbbN{}\minfty{}].    (ni-eventually-equal(f;g)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-01_48_52
Last ObjectModification:
2016_01_15-PM-11_15_40
Theory : basic
Home
Index