Nuprl Lemma : ni-eventually-equal_wf

[f,g:ℕ∞].  (ni-eventually-equal(f;g) ∈ ℙ)


Proof




Definitions occuring in Statement :  ni-eventually-equal: ni-eventually-equal(f;g) nat-inf: ℕ∞ uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  nat-inf: ℕ∞ uall: [x:A]. B[x] member: t ∈ T ni-eventually-equal: ni-eventually-equal(f;g) so_lambda: λ2x.t[x] nat: subtype_rel: A ⊆B so_apply: x[s] prop: implies:  Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q
Lemmas referenced :  le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties assert_wf nat_wf set_wf int_upper_subtype_nat bool_wf equal_wf int_upper_wf all_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination because_Cache lambdaEquality hypothesisEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality dependent_set_memberEquality addEquality natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[f,g:\mBbbN{}\minfty{}].    (ni-eventually-equal(f;g)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-01_48_52
Last ObjectModification: 2016_01_15-PM-11_15_40

Theory : basic


Home Index