Nuprl Lemma : ni-max_wf
∀[f,g:ℕ∞].  (ni-max(f;g) ∈ ℕ∞)
Proof
Definitions occuring in Statement : 
ni-max: ni-max(f;g)
, 
nat-inf: ℕ∞
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
nat-inf: ℕ∞
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ni-max: ni-max(f;g)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
Lemmas referenced : 
bool_wf, 
set_wf, 
all_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
assert_wf, 
assert_of_bor, 
nat_wf, 
bor_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
dependent_set_memberEquality, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
dependent_functionElimination, 
productElimination, 
independent_isectElimination, 
because_Cache, 
addEquality, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inlFormation, 
inrFormation, 
independent_functionElimination
Latex:
\mforall{}[f,g:\mBbbN{}\minfty{}].    (ni-max(f;g)  \mmember{}  \mBbbN{}\minfty{})
Date html generated:
2016_05_15-PM-01_48_04
Last ObjectModification:
2016_01_15-PM-11_16_13
Theory : basic
Home
Index