Nuprl Lemma : ni-max_wf

[f,g:ℕ∞].  (ni-max(f;g) ∈ ℕ∞)


Proof




Definitions occuring in Statement :  ni-max: ni-max(f;g) nat-inf: ℕ∞ uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  nat-inf: ℕ∞ uall: [x:A]. B[x] member: t ∈ T ni-max: ni-max(f;g) all: x:A. B[x] implies:  Q uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a prop: nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  bool_wf set_wf all_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties assert_wf assert_of_bor nat_wf bor_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename sqequalRule dependent_set_memberEquality lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination applyEquality hypothesisEquality hypothesis lambdaFormation dependent_functionElimination productElimination independent_isectElimination because_Cache addEquality natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll functionEquality axiomEquality equalityTransitivity equalitySymmetry inlFormation inrFormation independent_functionElimination

Latex:
\mforall{}[f,g:\mBbbN{}\minfty{}].    (ni-max(f;g)  \mmember{}  \mBbbN{}\minfty{})



Date html generated: 2016_05_15-PM-01_48_04
Last ObjectModification: 2016_01_15-PM-11_16_13

Theory : basic


Home Index