Nuprl Lemma : fpf-cap_functionality
∀[A:Type]. ∀[d1,d2:EqDecider(A)]. ∀[B:A ⟶ Type]. ∀[f:a:A fp-> B[a]]. ∀[x:A]. ∀[z:B[x]].  (f(x)?z = f(x)?z ∈ B[x])
Proof
Definitions occuring in Statement : 
fpf-cap: f(x)?z, 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
top: Top, 
fpf-ap: f(x), 
pi2: snd(t), 
fpf: a:A fp-> B[a], 
fpf-dom: x ∈ dom(f), 
pi1: fst(t), 
not: ¬A, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
false: False, 
fpf-cap: f(x)?z, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff
Lemmas referenced : 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
bool_wf, 
fpf-ap_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
fpf_ap_pair_lemma, 
assert-deq-member, 
l_member_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
fpf_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
functionExtensionality, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
promote_hyp, 
isect_memberFormation, 
unionElimination, 
equalityElimination, 
axiomEquality
Latex:
\mforall{}[A:Type].  \mforall{}[d1,d2:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[x:A].  \mforall{}[z:B[x]].
    (f(x)?z  =  f(x)?z)
Date html generated:
2018_05_21-PM-09_19_31
Last ObjectModification:
2018_02_09-AM-10_17_38
Theory : finite!partial!functions
Home
Index