Nuprl Lemma : fpf-empty-join
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[f:a:A fp-> B[a]]. ∀[eq:EqDecider(A)].  (f ⊕ ⊗ = f ∈ a:A fp-> B[a])
Proof
Definitions occuring in Statement : 
fpf-join: f ⊕ g, 
fpf-empty: ⊗, 
fpf: a:A fp-> B[a], 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
fpf: a:A fp-> B[a], 
fpf-empty: ⊗, 
fpf-join: f ⊕ g, 
pi1: fst(t), 
all: ∀x:A. B[x], 
fpf-cap: f(x)?z, 
fpf-dom: x ∈ dom(f), 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
ifthenelse: if b then t else f fi , 
prop: ℙ, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
rev_implies: P ⇐ Q, 
so_apply: x[s], 
so_lambda: λ2x.t[x]
Lemmas referenced : 
fpf_ap_pair_lemma, 
filter_nil_lemma, 
append_back_nil, 
append-nil, 
subtype_rel_list, 
top_wf, 
deq-member_wf, 
eqtt_to_assert, 
assert-deq-member, 
l_member_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
deq_wf, 
fpf_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
dependent_pairEquality_alt, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
because_Cache, 
functionExtensionality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
dependent_set_memberEquality_alt, 
universeIsType, 
dependent_pairFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity, 
voidElimination, 
setIsType, 
functionIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[eq:EqDecider(A)].    (f  \moplus{}  \motimes{}  =  f)
Date html generated:
2020_05_20-AM-09_02_28
Last ObjectModification:
2020_01_04-PM-11_09_54
Theory : finite!partial!functions
Home
Index