Nuprl Lemma : fpf-inv-rename_wf
∀[A,C:Type]. ∀[B:A ⟶ Type]. ∀[D:C ⟶ Type]. ∀[rinv:C ⟶ (A?)]. ∀[r:A ⟶ C]. ∀[f:c:C fp-> D[c]].
(fpf-inv-rename(r;rinv;f) ∈ a:A fp-> B[a]) supposing ((∀a:A. (D[r a] = B[a] ∈ Type)) and inv-rel(A;C;r;rinv))
Proof
Definitions occuring in Statement :
fpf-inv-rename: fpf-inv-rename(r;rinv;f)
,
fpf: a:A fp-> B[a]
,
inv-rel: inv-rel(A;B;f;finv)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
unit: Unit
,
member: t ∈ T
,
apply: f a
,
function: x:A ⟶ B[x]
,
union: left + right
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
fpf-inv-rename: fpf-inv-rename(r;rinv;f)
,
fpf: a:A fp-> B[a]
,
pi1: fst(t)
,
pi2: snd(t)
,
prop: ℙ
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
all: ∀x:A. B[x]
,
isl: isl(x)
,
compose: f o g
,
subtype_rel: A ⊆r B
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
cand: A c∧ B
,
inv-rel: inv-rel(A;B;f;finv)
,
outl: outl(x)
,
not: ¬A
,
false: False
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
bfalse: ff
Lemmas referenced :
l_member_wf,
all_wf,
equal_wf,
inv-rel_wf,
fpf_wf,
unit_wf2,
mapfilter_wf,
isl_wf,
assert_wf,
outl_wf,
member_map_filter,
assert_elim,
and_wf,
bfalse_wf,
btrue_neq_bfalse,
true_wf,
false_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
productElimination,
thin,
sqequalRule,
dependent_pairEquality,
functionEquality,
setEquality,
hypothesisEquality,
extract_by_obid,
isectElimination,
hypothesis,
applyEquality,
setElimination,
rename,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
instantiate,
cumulativity,
lambdaEquality,
universeEquality,
isect_memberEquality,
because_Cache,
unionEquality,
functionExtensionality,
lambdaFormation,
independent_isectElimination,
dependent_functionElimination,
independent_functionElimination,
dependent_set_memberEquality,
hyp_replacement,
applyLambdaEquality,
unionElimination,
independent_pairFormation,
voidElimination,
inlEquality
Latex:
\mforall{}[A,C:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[D:C {}\mrightarrow{} Type]. \mforall{}[rinv:C {}\mrightarrow{} (A?)]. \mforall{}[r:A {}\mrightarrow{} C]. \mforall{}[f:c:C fp-> D[c]].
(fpf-inv-rename(r;rinv;f) \mmember{} a:A fp-> B[a]) supposing
((\mforall{}a:A. (D[r a] = B[a])) and
inv-rel(A;C;r;rinv))
Date html generated:
2018_05_21-PM-09_27_28
Last ObjectModification:
2018_05_19-PM-04_38_21
Theory : finite!partial!functions
Home
Index