Nuprl Lemma : CV_wf

[A:Type]. ∀[F:t:ℕ ⟶ (ℕt ⟶ A) ⟶ A].  (CV(F) ∈ ℕ ⟶ A)


Proof




Definitions occuring in Statement :  CV: CV(F) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: all: x:A. B[x] implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q CV: CV(F) subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  int_seg_subtype subtype_rel_dep_function int_seg_properties false_wf int_seg_subtype_nat int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionEquality lemma_by_obid isectElimination thin natural_numberEquality setElimination rename hypothesisEquality isect_memberEquality because_Cache universeEquality lambdaFormation intWeakElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination unionElimination applyEquality productElimination

Latex:
\mforall{}[A:Type].  \mforall{}[F:t:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}t  {}\mrightarrow{}  A)  {}\mrightarrow{}  A].    (CV(F)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  A)



Date html generated: 2016_05_15-PM-04_32_33
Last ObjectModification: 2016_01_16-AM-11_17_04

Theory : general


Home Index