Nuprl Lemma : accum_split_one_one

[A,T:Type]. ∀[x:A]. ∀[g:(T List × A) ⟶ A]. ∀[f:(T List × A) ⟶ 𝔹]. ∀[X,Y:T List].
  Y ∈ (T List) supposing accum_split(g;x;f;X) accum_split(g;x;f;Y) ∈ ((T List × A) List × List × A)


Proof




Definitions occuring in Statement :  accum_split: accum_split(g;x;f;L) list: List bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q subtype_rel: A ⊆B top: Top pi1: fst(t) pi2: snd(t) guard: {T}
Lemmas referenced :  accum_split_inverse accum_split_wf list_wf set_wf is_accum_splitting_wf pi1_wf_top subtype_rel_product top_wf equal_wf pi2_wf bool_wf append_wf concat_wf map_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality cumulativity functionExtensionality applyEquality productEquality hypothesis sqequalRule lambdaEquality spreadEquality productElimination independent_pairEquality lambdaFormation setElimination rename independent_isectElimination isect_memberEquality voidElimination voidEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination setEquality axiomEquality functionEquality universeEquality hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[A,T:Type].  \mforall{}[x:A].  \mforall{}[g:(T  List  \mtimes{}  A)  {}\mrightarrow{}  A].  \mforall{}[f:(T  List  \mtimes{}  A)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[X,Y:T  List].
    X  =  Y  supposing  accum\_split(g;x;f;X)  =  accum\_split(g;x;f;Y)



Date html generated: 2016_10_25-AM-11_10_44
Last ObjectModification: 2016_07_12-AM-07_17_16

Theory : general


Home Index