Nuprl Lemma : is_accum_splitting_wf

[T,A:Type]. ∀[L:T List]. ∀[LL:(T List × A) List]. ∀[L2:T List × A]. ∀[f:(T List × A) ⟶ 𝔹]. ∀[x:A].
[g:(T List × A) ⟶ A].
  (is_accum_splitting(T;A;L;LL;L2;f;g;x) ∈ ℙ)


Proof




Definitions occuring in Statement :  is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) list: List bool: 𝔹 uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) prop: and: P ∧ Q pi1: fst(t) top: Top so_lambda: λ2x.t[x] all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a implies:  Q pi2: snd(t) so_apply: x[s] ge: i ≥  decidable: Dec(P) or: P ∨ Q le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A int_seg: {i..j-} guard: {T} lelt: i ≤ j < k less_than: a < b squash: T
Lemmas referenced :  equal_wf list_wf append_wf concat_wf map_wf length_wf length-append l_all_wf2 not_wf assert_wf null_wf3 subtype_rel_list top_wf all_wf l_member_wf iseg_wf hd_wf cons_wf nil_wf length_nil non_neg_length length_cons length_append pi1_wf_top length_of_cons_lemma length_of_nil_lemma decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf pi2_wf int_seg_wf select_wf int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis because_Cache lambdaEquality productElimination applyLambdaEquality isect_memberEquality voidElimination voidEquality lambdaFormation setElimination rename applyEquality independent_isectElimination functionEquality independent_pairEquality setEquality functionExtensionality dependent_functionElimination natural_numberEquality equalityTransitivity equalitySymmetry unionElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll independent_functionElimination addEquality imageElimination axiomEquality universeEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[L:T  List].  \mforall{}[LL:(T  List  \mtimes{}  A)  List].  \mforall{}[L2:T  List  \mtimes{}  A].  \mforall{}[f:(T  List  \mtimes{}  A)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:A].
\mforall{}[g:(T  List  \mtimes{}  A)  {}\mrightarrow{}  A].
    (is\_accum\_splitting(T;A;L;LL;L2;f;g;x)  \mmember{}  \mBbbP{})



Date html generated: 2018_05_21-PM-08_06_01
Last ObjectModification: 2017_07_26-PM-05_42_01

Theory : general


Home Index