Nuprl Lemma : accum_split_wf
∀[A,T:Type]. ∀[f:(T List × A) ⟶ 𝔹]. ∀[g:(T List × A) ⟶ A]. ∀[x:A]. ∀[L:T List].
  (accum_split(g;x;f;L) ∈ {p:(T List × A) List × T List × A| let LL,L2 = p in is_accum_splitting(T;A;L;LL;L2;f;g;x)} )
Proof
Definitions occuring in Statement : 
accum_split: accum_split(g;x;f;L)
, 
is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x)
, 
list: T List
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
spread: spread def, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
squash: ↓T
, 
less_than: a < b
, 
sq_type: SQType(T)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
guard: {T}
, 
prop: ℙ
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
bfalse: ff
, 
cons: [a / b]
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
cand: A c∧ B
, 
concat: concat(ll)
, 
it: ⋅
, 
nil: []
, 
select: L[n]
, 
so_apply: x[s1;s2;s3]
, 
so_lambda: so_lambda3, 
append: as @ bs
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x)
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
accum_split: accum_split(g;x;f;L)
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
less_than': less_than'(a;b)
, 
subtract: n - m
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
int_iseg: {i...j}
, 
unit: Unit
, 
bool: 𝔹
, 
spreadn: spread3, 
listp: A List+
, 
nat_plus: ℕ+
Lemmas referenced : 
istype-universe, 
bool_wf, 
list_wf, 
length_wf_nat, 
istype-nat, 
int_term_value_add_lemma, 
itermAdd_wf, 
top_wf, 
subtype_rel_list, 
null_wf3, 
decidable__assert, 
length_wf, 
non_neg_length, 
subtype_rel_self, 
istype-le, 
decidable__lt, 
decidable__le, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformeq_wf, 
intformnot_wf, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
subtract_wf, 
decidable__equal_int, 
subtract-1-ge-0, 
int_seg_wf, 
int_seg_properties, 
istype-less_than, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
istype-int, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
length_of_cons_lemma, 
null_cons_lemma, 
product_subtype_list, 
is_accum_splitting_wf, 
iseg_wf, 
istype-assert, 
iseg_nil, 
istype-void, 
l_all_nil, 
reduce_hd_cons_lemma, 
reduce_nil_lemma, 
istype-base, 
stuck-spread, 
list_ind_nil_lemma, 
map_nil_lemma, 
nil_wf, 
list_accum_nil_lemma, 
length_of_nil_lemma, 
null_nil_lemma, 
list-cases, 
iff_weakening_equal, 
false_wf, 
subtract-is-int-iff, 
le-add-cancel2, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-associates, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
sq_stable__le, 
not-le-2, 
istype-false, 
subtract_nat_wf, 
length_firstn_eq, 
true_wf, 
squash_wf, 
less_than_wf, 
firstn_wf, 
last-lemma-sq, 
list_accum_append, 
assert_of_bnot, 
eqff_to_assert, 
iff_weakening_uiff, 
iff_transitivity, 
assert_of_null, 
uiff_transitivity, 
not_wf, 
bnot_wf, 
assert_wf, 
equal-wf-T-base, 
append_wf, 
eqtt_to_assert, 
last_wf, 
cons_wf, 
list_accum_cons_lemma, 
list_ind_cons_lemma, 
pi1_wf_top, 
map_wf, 
concat_wf, 
append_back_nil, 
iseg_single, 
map_cons_lemma, 
length-append, 
select_wf, 
equal_wf, 
select_append_front, 
pi2_wf, 
select_append_back, 
length-singleton, 
add-member-int_seg2, 
map_append_sq, 
concat_append, 
concat-single, 
l_all_single, 
all_wf, 
l_all_append, 
add-is-int-iff, 
nat_plus_properties, 
add_nat_plus, 
hd-append-sq, 
add-subtract-cancel, 
length_append, 
le_wf, 
select-cons-hd, 
length_cons, 
length_nil, 
append_assoc, 
btrue_neq_bfalse, 
not_assert_elim, 
assert_elim, 
iseg_append_single
Rules used in proof : 
universeEquality, 
functionIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
addEquality, 
imageElimination, 
hypothesis_subsumption, 
promote_hyp, 
productIsType, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
because_Cache, 
instantiate, 
applyEquality, 
unionElimination, 
productElimination, 
inhabitedIsType, 
functionIsTypeImplies, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
voidElimination, 
universeIsType, 
independent_pairFormation, 
Error :memTop, 
dependent_functionElimination, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
intWeakElimination, 
sqequalRule, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaFormation_alt, 
thin, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
equalityIstype, 
baseClosed, 
productEquality, 
independent_pairEquality, 
closedConclusion, 
baseApply, 
pointwiseFunctionality, 
minusEquality, 
imageMemberEquality, 
equalityElimination, 
intEquality, 
cumulativity, 
dependent_pairEquality_alt, 
hyp_replacement, 
setIsType, 
functionEquality, 
voidEquality
Latex:
\mforall{}[A,T:Type].  \mforall{}[f:(T  List  \mtimes{}  A)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[g:(T  List  \mtimes{}  A)  {}\mrightarrow{}  A].  \mforall{}[x:A].  \mforall{}[L:T  List].
    (accum\_split(g;x;f;L)  \mmember{}  \{p:(T  List  \mtimes{}  A)  List  \mtimes{}  T  List  \mtimes{}  A| 
                                                      let  LL,L2  =  p 
                                                      in  is\_accum\_splitting(T;A;L;LL;L2;f;g;x)\}  )
Date html generated:
2020_05_20-AM-08_12_08
Last ObjectModification:
2020_01_22-PM-03_22_52
Theory : general
Home
Index