Nuprl Lemma : adjacent-singleton

[T:Type]. ∀[x,y,u:T].  False supposing adjacent(T;[u];x;y)


Proof




Definitions occuring in Statement :  adjacent: adjacent(T;L;x;y) cons: [a b] nil: [] uimplies: supposing a uall: [x:A]. B[x] false: False universe: Type
Definitions unfolded in proof :  adjacent: adjacent(T;L;x;y) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a false: False all: x:A. B[x] top: Top subtract: m exists: x:A. B[x] and: P ∧ Q guard: {T} int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A prop: so_lambda: λ2x.t[x] decidable: Dec(P) or: P ∨ Q so_apply: x[s]
Lemmas referenced :  length_of_cons_lemma length_of_nil_lemma int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf exists_wf int_seg_wf subtract_wf length_wf cons_wf nil_wf equal_wf select_wf add-subtract-cancel decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution extract_by_obid dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis productElimination isectElimination because_Cache hypothesisEquality setElimination rename natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation computeAll cumulativity productEquality unionElimination addEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x,y,u:T].    False  supposing  adjacent(T;[u];x;y)



Date html generated: 2018_05_21-PM-06_32_36
Last ObjectModification: 2017_07_26-PM-04_51_42

Theory : general


Home Index