Nuprl Lemma : can-apply-p-co-filter

[T:Type]. ∀[P:T ⟶ ℙ]. ∀[f:∀x:T. Dec(P[x])]. ∀[x:T].  uiff(↑can-apply(p-co-filter(f);x);¬P[x])


Proof




Definitions occuring in Statement :  p-co-filter: p-co-filter(f) can-apply: can-apply(f;x) assert: b decidable: Dec(P) uiff: uiff(P;Q) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] not: ¬A function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  p-co-filter: p-co-filter(f) can-apply: can-apply(f;x) member: t ∈ T so_apply: x[s] subtype_rel: A ⊆B prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] uimplies: supposing a all: x:A. B[x] top: Top uiff: uiff(P;Q) and: P ∧ Q not: ¬A implies:  Q false: False decidable: Dec(P) or: P ∨ Q isl: isl(x) assert: b ifthenelse: if then else fi  bfalse: ff btrue: tt true: True
Lemmas referenced :  assert_wf can-apply_wf p-co-filter_wf subtype_rel_dep_function top_wf subtype_rel_union not_wf all_wf decidable_wf assert_witness false_wf true_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut applyEquality hypothesisEquality hypothesis thin lambdaEquality sqequalHypSubstitution universeEquality lemma_by_obid isectElimination unionEquality because_Cache independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality functionEquality cumulativity isect_memberFormation introduction productElimination independent_pairEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination unionElimination independent_pairFormation natural_numberEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[f:\mforall{}x:T.  Dec(P[x])].  \mforall{}[x:T].    uiff(\muparrow{}can-apply(p-co-filter(f);x);\mneg{}P[x])



Date html generated: 2016_05_15-PM-03_30_59
Last ObjectModification: 2015_12_27-PM-01_11_00

Theory : general


Home Index