Nuprl Lemma : finite-function-type-equality

[k:ℕ]. ∀[F:ℕk ⟶ Type].  ((i:ℕk ⟶ F[i]) (i:ℕk ⟶ map(λi.F[i];upto(k))[i]) ∈ Type)


Proof




Definitions occuring in Statement :  upto: upto(n) select: L[n] map: map(f;as) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: squash: T prop: so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  int_seg_wf equal_wf squash_wf true_wf map_select upto_wf length_upto lelt_wf length_wf iff_weakening_equal nat_wf int_seg_properties nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma select_upto
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis applyEquality instantiate lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality functionExtensionality because_Cache cumulativity dependent_set_memberEquality productElimination independent_pairFormation sqequalRule imageMemberEquality baseClosed independent_isectElimination independent_functionElimination isect_memberEquality axiomEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[F:\mBbbN{}k  {}\mrightarrow{}  Type].    ((i:\mBbbN{}k  {}\mrightarrow{}  F[i])  =  (i:\mBbbN{}k  {}\mrightarrow{}  map(\mlambda{}i.F[i];upto(k))[i]))



Date html generated: 2018_05_21-PM-08_03_16
Last ObjectModification: 2017_07_26-PM-05_39_29

Theory : general


Home Index