Nuprl Lemma : fix_wf1
∀[F:{F:ℕ ⟶ Type| Top ⊆r (F 0)} ]. ∀[G:⋂n:ℕ. ((F n) ⟶ (F (n + 1)))].  (fix(G) ∈ ⋂n:ℕ. (F n))
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
fix: fix(F)
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
Lemmas referenced : 
subtype_rel_self, 
subtract-add-cancel, 
false_wf, 
top_wf, 
subtype_rel_wf, 
le_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
nat_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
isect_memberEquality, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
isectEquality, 
functionEquality, 
applyEquality, 
because_Cache, 
dependent_set_memberEquality, 
addEquality, 
setEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[F:\{F:\mBbbN{}  {}\mrightarrow{}  Type|  Top  \msubseteq{}r  (F  0)\}  ].  \mforall{}[G:\mcap{}n:\mBbbN{}.  ((F  n)  {}\mrightarrow{}  (F  (n  +  1)))].    (fix(G)  \mmember{}  \mcap{}n:\mBbbN{}.  (F  n))
Date html generated:
2016_05_15-PM-04_12_51
Last ObjectModification:
2016_01_16-AM-11_07_00
Theory : general
Home
Index