Nuprl Lemma : iroot-zero
∀[n:ℕ+]. (iroot(n;0) ~ 0)
Proof
Definitions occuring in Statement : 
iroot: iroot(n;x)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iroot: iroot(n;x)
, 
integer-nth-root-ext, 
has-value: (a)↓
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
genrec-ap: genrec-ap, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
false: False
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
integer-nth-root-ext, 
le_wf, 
false_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
nat_plus_properties, 
nat_plus_subtype_nat, 
exp_wf_nat_plus, 
int-value-type, 
less_than_wf, 
set-value-type, 
nat_plus_wf, 
value-type-has-value, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
hypothesis, 
callbyvalueReduce, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
independent_functionElimination, 
sqequalAxiom
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  (iroot(n;0)  \msim{}  0)
Date html generated:
2016_05_15-PM-05_14_28
Last ObjectModification:
2016_01_16-AM-11_37_12
Theory : general
Home
Index